Show simple item record

dc.contributor.authorAfanou, Komlavi Anani
dc.contributor.authorStraumfors, Anne
dc.contributor.authorSkogstad, Asbjørn
dc.contributor.authorNayak, Ajay P.
dc.contributor.authorSkaar, Ida
dc.contributor.authorHjeljord, Linda
dc.contributor.authorTronsmo, Arne
dc.contributor.authorWijnand, Eduard
dc.contributor.authorGreen, Brett James
dc.date.accessioned2024-09-23T12:58:59Z
dc.date.available2024-09-23T12:58:59Z
dc.date.created2015-06-24T08:57:49Z
dc.date.issued2015
dc.identifier.citationApplied and Environmental Microbiology. 2015, 81 (17), 5794-5803.
dc.identifier.issn0099-2240
dc.identifier.urihttps://hdl.handle.net/11250/3153805
dc.description.abstractSubmicronic fungal fragments have been observed in in vitro aerosolization experiments. The occurrence of these particles has therefore been suggested to contribute to respiratory health problems observed in mold-contaminated indoor environments. However, the role of submicronic fragments in exacerbating adverse health effects has remained unclear due to limitations associated with detection methods. In the present study, we report the development of an indirect immunodetection assay that utilizes chicken polyclonal antibodies developed against spores from Aspergillus versicolor and high-resolution field emission scanning electron microscopy (FESEM). Immunolabeling was performed with A. versicolor fragments immobilized and fixed onto poly-l-lysine-coated polycarbonate filters. Ninety percent of submicronic fragments and 1- to 2-μm fragments, compared to 100% of >2-μm fragments generated from pure freeze-dried mycelial fragments of A. versicolor, were positively labeled. In proof-of-concept experiments, air samples collected from moldy indoor environments were evaluated using the immunolabeling technique. Our results indicated that 13% of the total collected particles were derived from fungi. This fraction comprises 79% of the fragments that were detected by immunolabeling and 21% of the spore particles that were morphologically identified. The methods reported in this study enable the enumeration of fungal particles, including submicronic fragments, in a complex heterogeneous environmental sample.
dc.description.abstractIndirect immunodetection of fungal fragments by field emission scanning electron microscopy
dc.language.isoeng
dc.titleIndirect immunodetection of fungal fragments by field emission scanning electron microscopy
dc.title.alternativeIndirect immunodetection of fungal fragments by field emission scanning electron microscopy
dc.typePeer reviewed
dc.typeJournal article
dc.description.versionpublishedVersion
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.doi10.1128/AEM.00929-15
dc.identifier.cristin1250401
dc.source.journalApplied and Environmental Microbiology
dc.source.volume81
dc.source.issue17
dc.source.pagenumber5794-5803


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record