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Antimicrobial resistance is a major threat to human health and must 
be  approached from a One Health perspective. Use of antimicrobials in 
animal husbandry can lead to dissemination and persistence of resistance in 
human pathogens. Polyether ionophores (PIs) have antimicrobial activities 
and are among the most extensively used feed additives for major production 
animals. Recent discoveries of genetically encoded PI resistance mechanisms 
and co-localization of resistance mechanisms against PIs and antimicrobials 
used in human medicine on transferrable plasmids, have raised concerns that 
use of PIs as feed additives bear potential risks for human health. This review 
summarizes the current knowledge on PI resistance and discusses the potential 
consequences of PI-usage as feed additives in a One Health perspective.
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1 Introduction

Antimicrobial resistance (AMR) poses a serious threat to human health. It has been 
estimated that 1.27 million deaths were caused by bacterial AMR in 2019 (Murray et al., 2022) 
and the negative effect on human welfare is predicted to escalate in the next decades. Although 
the main focus on AMR has been on health care settings, it is recognized that veterinary 
medicine, plant- and animal production, and environmental sectors play an important role in 
the origin, persistence, and spread of AMR.

Polyether ionophores (PIs) have been used as feed additives for production animals since 
the early 1970 (Chapman et al., 2010). PIs possess both antibacterial and antiprotozoal activity 
and are currently used in poultry production worldwide to control severe diseases such as 
coccidiosis caused by Eimeria spp. and necrotic enteritis caused by Clostridium perfringens 
(Martins et al., 2022). The antibacterial activity of PIs has also proven useful to improve feed 
conversion in ruminants (Callaway et al., 2003; Kim et al., 2014; Scharen et al., 2017). PIs are 
not used in human medicine due to their cytotoxicity. However, PIs and PI-derivatives with 
low toxicity are considered for therapeutic treatment of cancer (Huczyński, 2012; Kaushik 
et al., 2018; Wang et al., 2021) and infectious diseases caused by bacteria (Wollesen et al., 
2023), fungi, protozoa, and even virus (Huczyński, 2012; Lin et al., 2021).

Sales and use of PIs are not systematically reported in most countries, making it difficult 
to estimate the global consumption level (Hansen et al., 2009; Mulchandani et al., 2023). 
However, based on available data from countries in Europe, North America, and Australia, PIs 
are among the most extensively used antimicrobial feed additives for production animals 
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across the world (DANMAP 2015, 2016; PHAC, 2016; SWEDRES/
SVARM 2016, 2017; FDA, 2023a).

Polyether ionophores are produced and secreted by bacteria of the 
class Actinomycetia. They are highly lipophilic compounds that form 
lipid soluble complexes with cations and facilitate their diffusion 
through biological membranes. This disrupts chemical gradients 
across membranes and interferes with essential biological processes. 
The PIs display different ion selectivity for cations abundant in 
biological systems depending on their structure. Most commonly used 
PIs in animal husbandry can bind both K+ and Na+ under artificial 
conditions, and with the exception of monensin, these PIs prefer K+ 
over Na+. Lasalocid, however, has been shown to form complexes with 
both mono- and divalent cations (Table 1).

The antimicrobial mechanism(s) of these PIs are not fully 
understood. Independent of the cation preference in artificial systems, 
it appears that the effect of most PIs used in animal husbandry is 
disruption of the Na+/K+ homeostasis and a concomitant change in 
cytosolic pH (Russell and Strobel, 1989). This could theoretically be a 
direct effect of the PIs ability to bind both Na+ and K+ and thereby 
facilitate transport of Na+ into the cell and K+ out of the cell, and that 
the change in pH results from induction of endogenous membrane 
transport systems to restore the chemical gradients of Na+ and K+. 
However, the general opinion is that PIs transport a cation (Na+/K+) 
in one direction and H+ in the opposite direction. The primary effect 
would therefore be an intracellular change in Na+ or K+ gradient and 
a simultaneous change in pH. It has been hypothesized that the 
resulting disruption of membrane cation gradients induces 
compensatory mechanisms to restore cation-homeostasis, including 
Na+/K+ ATPase and F-ATPase. The activity of these compensatory 
mechanisms results in a secondary effect of disrupted Na+, K+, and H+ 
homeostasis, increased demand for ATP and subsequent tertiary 
effects on essential cellular processes (Figures  1A,B; Smith and 
Galloway, 1983; Russell and Strobel, 1989).

It is likely that the PI-mediated disruption of cation gradients 
directly or indirectly inhibits both primary and secondary membrane 
transport proteins resulting in disrupted import and export of 
nutrients, metabolites and xenobiotics. In addition, the disturbances 
in the intracellular cation concentration may inhibit enzymes involved 
in essential cellular processes. Although it has been suggested that 

bacterial growth inhibition could be caused either by energy depletion 
due to increased demand for ATP or by cell acidification as a result of 
influx of H+ (Russell, 1987), other mechanisms may also be involved.

Polyether ionophores affect bacterial metabolism of carbohydrates, 
amino acids, and fatty acids. The specific effect of disrupting the 
chemical gradients across the cytoplasmic membrane varies 
depending on the cation-dependent processes and the metabolic 
requirements of the organism. Chow et al. showed that monensin and 
lasalocid inhibited growth of the gram-negative bacterium Fibrobacter 
succinogenes. They showed that the ATP synthesis was decreased, most 
likely as an effect of an inability to take up glucose via Na+/glucose 
symporters (Chow and Russell, 1992). PIs have also been shown to 
reduce amino acid transport in ruminal bacteria (Chen and Russell, 
1989; Russell and Strobel, 1989; Van Kessel and Russell, 1992). In 
contrast, while monensin exposure caused cessation of growth of 
Streptococcus bovis in vitro (Russell, 1987), glucose transport was not 
inhibited and glucose fermentation continued resulting in continuous 
ATP production (Russell, 1987). The hypothesized explanation to this 
observation was that S. bovis can use the phosphotransferase system 
as well as facilitated diffusion for glucose uptake (Russell et al., 1990).

Similar biological effects have been observed in the protozoan 
parasite Eimeria tenella where monensin caused an increase in 
intracellular concentrations of both Na+ and K+ (Smith and Galloway, 
1983). As specific inhibition of the Na+/K+-pump increased the K+ 
level, it was proposed that monensin caused an initial uptake of Na+ 
followed by an exchange of intracellular Na+ for extracellular K+ 
(Figure 1B). Several anticoccidial modes of PIs have been suggested, 
such as energy depletion, mitochondrial stress, and inhibition of 
invasion of enterocytes. However, parasite swelling, and eventual 
bursting, have been suggested as the most likely mode of action (Smith 
et al., 1981; Chapman et al., 2010). Whether the osmotic stress survival 
of bacteria is influenced by PIs has to our knowledge not been 
shown experimentally.

The specific activity of PIs is influenced by the extracellular 
conditions. Extracellular cation concentrations promoting the natural 
electrochemical gradients across the cytoplasm (high [Na+], [H+], 
[Ca2+]) enhances the activity of ionophores, whereas extracellular 
cation concentrations equilibrating the intracellular levels (high [K+]) 
decrease the ionophore-activities (Dawson and Boling, 1987; Russell 

TABLE 1 Polyether ionophores commonly used in animal husbandry and their ion selectivity in artificial systems.

Ionophore Concentration in 
feed

Producer organism Mr Selectivity sequence References

Narasin 60–70 mg/kg† Kitasatospora aureofaciens 765 K+ > Na+ Caughey et al. (1986)

Salinomycin 50–70 mg/kg† Streptomyces albus 751 K+ > Na+ Rokitskaya et al. (2023)

Lasalocid (X-537A) 75–125 mg/kg† Streptomyces lasalocidi 591 K+ > Na+ > Ca2+ > Mg2+ Pressman (1968); 

Antonenko and 

Yaguzhinsky (1988)

Maduramicin 

(X-14868A)

5–6 mg/kg† Actinomadura yumanensis 934 K+ > Na+ Liu et al. (1983)

Monensin A 100–125 mg/kg† Streptomyces cinnamonensis 671 Na+ > K+ Pressman (1968); 

Antonenko and 

Yaguzhinsky (1988)

Laidlomycin ~110 mg/kg# Streptovertilicillium 

olivoreticuli

698 K+ > Na+ > Ca2+ Gräfe et al. (1989)

†Minimum and maximum concentrations of active substance/kg in complete feed for broiler production in the EU (EUR-lex, 2023).  
#Recommended concentration of active substance/kg for improved feed efficiency in cattle in the United States (FDA, 2023b).
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et al., 1988; Chow and Russell, 1992; Van Kessel and Russell, 1992; 
Wollesen et al., 2023). Considering that the cation concentrations and 
pH varies along the length of the gastrointestinal tract of animals, it is 
likely that the antimicrobial effect of PIs differs in different parts of the 
gastrointestinal tract, and thereby exert different selection pressures 
on the local microbiota.

2 PI-resistance mechanisms in 
bacteria

Antimicrobial resistance is the ability of bacteria to survive and 
grow in the presence of antimicrobials (Balaban et al., 2019). Since 
polyether ionophores have not been used in human medicine, clinical 
cut-off values have not been established. When we discuss resistance 
to polyether ionophores in this review, we refer to survival and growth 
of: (1) a particular strain of bacteria at PI concentrations to which it 
was previously susceptible, (2) a species at concentrations above the 
epidemiological cut-off values for that species, or (3) a species at the 
highest concentration of PI tested in susceptibility assays in vitro 
(intrinsic resistance).

Resistance mechanisms in bacteria are attributed to either 
intrinsic resistance, where all individuals of a certain type of bacteria 
can survive and grow in the presence of a specific antimicrobial, or 
acquired resistance that can arise in a previously susceptible 
population due to mutations or horizontal transfer of resistance genes. 
In addition, bacteria can survive high concentrations of antimicrobials 
due to the formation of persister cells or biofilms. Persister cells are 
subpopulations of a species with a different physiology (metabolically 
quiescent) compared to the general bacterial population. Biofilms are 
bacterial communities embedded in an extracellular matrix consisting 
of physiologically diverging subpopulations of bacteria (Olivares 
et al., 2013).

Although bacterial resistance to PIs was described 30 years ago, 
the mechanism(s) of resistance are poorly understood. Table  2 
summarizes the currently known putative and confirmed bacterial 
resistance mechanisms.

2.1 PI-resistance in gram-negative bacteria

Gram-negative bacteria generally display intrinsic resistance to 
PIs due to the nature of their cell envelope. The outer membrane of 
gram-negative bacteria is impenetrable to many macromolecules and 
allows passage of solutes through porins. Porins are hydrophilic 
channels embedded in the outer membrane with a size exclusion limit 
of approximately 600 daltons. Ionophores are highly lipophilic and in 
general larger than 600 daltons, making them unable to pass through 
the porins and the negatively charged LPS of the outer membrane 
(Nagaraja, 1995).

Intrinsic resistance to PIs is not universal to all gram-negative 
bacteria. Certain strains of Bacteroides, Fibrobacter, and Prevotella 
belonging to the ruminal microbiota were sensitive to monensin when 
grown in vitro (Chen and Wolin, 1979; Newbold et al., 1993; Callaway 
and Russell, 1999, 2000). Some sensitive strains developed resistance 
after exposure to sub-lethal monensin concentrations through 
unknown mechanisms, while others remained sensitive (Callaway and 
Russell, 1999, 2000). Prevotella ruminicola grown in the presence of 
increasing concentrations of tetronasin developed resistance to 
tetronasin, lasalocid, and monensin and to a lesser extent to the 
glycopeptide avoparcin. The resistant mutants did not lose the 
resistance phenotype after subculturing in the absence of ionophores 
and bound less radioactively labeled ionophore. Reduced metabolism 
of tetraphenylalanine (Mr = 607), but unaffected metabolism of 
triphenylalanine (Mr = 460), indicated reduced penetration through 
the outer membrane, and reduced porin exclusion limit was suggested 
as the mechanism of resistance (Newbold and Wallace, 1989).

2.2 PI-resistance in gram-positive bacteria 
and mycobacteria

In contrast to gram-negative bacteria, gram-positive bacteria do 
not possess a protective outer membrane. Although the outer 
peptidoglycan layer of gram-positive bacteria can be relatively thick, 
it is porous and permits diffusion of small molecules, and this allows 

FIGURE 1

Proposed effects of monensin-mediated ion gradient disruption in Eimeria tenella (Smith and Galloway, 1983) parasites (A) and in gram-positive 
Streptococcus bovis (Russell, 1987) bacteria (B). Encircled numbers represent suggested sequence of ion transport events. Red arrows indicate 
direction of change in cystosolic ion concentrations. Cation gradients across a bilayer is displayed by triangles.
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for the lipophilic ionophores to readily dissolve into the cell membrane 
of gram-positive bacteria (Rutkowski and Brzezinski, 2013).

2.2.1 Plasmid mediated PI-resistance mechanisms
Although the biological role of PI production is not yet established 

(Bakker, 1979; Kevin et al., 2009), it is likely that the antibacterial 
activity of ionophores improves the competitiveness of PI secreting 
bacteria in their habitats. The secretion of ionophores into the 
environment suggests that PI producing bacteria concomitantly 
express protective mechanisms of self-resistance. A self-resistance 
mechanism against the PI tetronasin was identified in 1994 by 

screening of a genomic library from the tetronasin-resistant 
Strepmomyces longisporoflavus in the tetronasin-susceptible species 
Streptomyces lividans (Linton et al., 1994). Tetronasin-resistance was 
associated with a DNA region containing the tnrB2/B3 operon 
encoding an ATP-binding cassette (ABC) transporter consisting of 
ATPase (TnrB2) and permease (TnrB3) subunits. Later, the presence 
of plasmid-encoded homologs of tnrB2/B3 were identified in 
Enterococcus faecium isolates from Swedish and Norwegian poultry, 
and the presence of these genes on large mobile plasmids correlated 
with resistance to narasin (Nilsson et al., 2016). Naemi et al. (2020) 
cloned the putative narasin resistance genes, coined narAB, into a 

TABLE 2 Putative bacterial polyether ionophore-resistance mechanisms.

Resistance Bacteria Target PI Putative mechanism References

Intrinsic Many gram (−) All PIs Reduced permeability due to an 

outer membrane with negatively 

charged LPS and porins

Nagaraja (1995)

Acquired Enterococcus faecium (+) Narasin, Salinomycin, and 

Maduramicin

Ionophore efflux by ABC type 

transporter encoded by narAB

Naemi et al. (2020)

Enterococcus faecalis (+)

Streptomyces lividans (+) Tetronasin§ Ionophore efflux by ABC type 

transporter encoded by tnrB2/

B3

Linton et al. (1994)

Staphylococcus aureus (+) Nanchangmycin§ Regulation of potassium 

homeostasis by potassium 

importer encoded by trkH†, 

Regulation of membrane 

integrity by proteins encoded by 

sarV†, mspA†

Wollesen et al. (2023)

S. aureus (+) Nanchangmycin§, Lasalocid, 

and Salinomycin

Altered metabolism due to 

mutations in genes aroC#, 

hemB#, qoxABC#, ndh2#, and 

cyoE#

Wollesen et al. (2023)

S. aureus (+) Monensin Altered nucleotide metabolism 

due to mutations in apt†, purR†, 

and Regulation of Na+/H+ 

homeostasis by Na+/H+ 

antiporter encoded by mnh†

Dan I. Andersson (personal 

communication, March 9, 

2023; published with 

permission)

Mycolicibacterium aurum (AF) Nigericin§ Altered gene regulation due to 

mutations in transcriptional 

regulator tetR†, Regulation of 

Na+/H+ homeostasis by Na+/H+ 

antiporter encoded by nhaA†

Huang et al. (2017)

M. aurum (AF) Calcimycin§ Altered gene regulation due to 

mutations in transcriptional 

regulator tetR†

Huang et al. (2017)

Altered physiology Prevotella bryantii (−) Monensin Cell wall thickening Callaway and Russell (1999); 

Rychlik and Russell (2002); 

Simjee et al. (2012)
E. faecium (+)

E. faecalis (+)

Clostridium aminophilum (+)

S. aureus (+) Salinomycin, Narasin, 

Nanchangmycin§, and 

Calcimycin§

Biofilm and persisters Wollesen et al. (2023)

†Mutants isolated under laboratory conditions; #transposon insertion mutant, (−) gram-negative, (+) gram-positive, (AF) acid fast; §ionophores presented to provide insight into potential 
resistance mechanisms, but not applied in animal production.
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cloning vector under control of its natural promoter and unequivocally 
showed that this operon was sufficient to confer resistance to the PIs 
narasin, salinomycin and maduramicin, but not to monensin. 
Interestingly, Naemi et al. also showed that the narAB operon was 
transcriptionally upregulated by exposure to narasin, which 
potentially reduces the fitness cost associated with carrying the operon 
in PI-free conditions.

In E. faecium isolated from broilers in Norway (Sletvold et al., 
2007, 2008, 2010), Sweden (Nilsson et al., 2016), Denmark (Leinweber 
et al., 2018), and the Netherlands (Pikkemaat et al., 2022), the narAB 
operon was located on plasmids belonging to the broad-host-range 
inc18-group (Gilmore et al., 2014). Inc18 plasmids are widespread in 
isolates from the environment, the clinic, and domestic animals 
(Kohler et al., 2018). They are naturally occurring in streptococci and 
enterococci, often carry resistance genes, and have been shown to 
be transferable from enterococci to staphylococci (Kohler et al., 2018). 
The assembled NarAB-encoding plasmids published to date, vary in 
size and carry mobile elements such as transposons and insertion 
sequences. These plasmids share only limited gene synteny. However, 
the narAB operon is often associated with a full or truncated ω-ε-ζ 
toxin-antitoxin system and flanked by insertion sequences, such as 
IS1216 (Sletvold et al., 2007, 2008, 2010; Leinweber et al., 2018). Filter 
mating experiments demonstrated that NarAB encoding plasmids 
were transferable between E. faecium strains despite the lack of 
apparent plasmid encoded transfer systems (Dahl et al., 2007; Nilsson 
et al., 2012; Leinweber et al., 2018; Naemi et al., 2020). Leinweber et al. 
(2018) observed that the NarAB encoding plasmid was transferred by 
conjugation along with a larger co-residing conjugative plasmid 
suggesting that the larger plasmid acted as a helper plasmid. In Dutch 
E. faecalis isolates, narAB was most often localized on large plasmids 
of the RepA_N family (Pikkemaat et al., 2022). RepA_N plasmids 
display a relatively broad distribution but appear to be adapted to their 
host and display restricted transferability to other species (Weaver 
et al., 2009).

The resistance mechanism(s) of NarAB and TnrB2/B3 have not 
yet been characterized. The ABC transporter superfamily is an ancient 
family of membrane transporters that utilizes the energy released from 
hydrolysis of ATP to drive transport of substrates against a 
concentration gradient. ABC-transporters transport a wide range of 
substrates including ions, nutrients, xenobiotics, and secondary 
metabolites, including antibiotics. It is obvious to assume that NarAB 
and other TnrB2/B3 homologs function as drug efflux proteins, but 
this has not yet been proven experimentally.

The origin of narAB is not known. The occurrence of narAB in 
certain subpopulations of enterococci and the general localization of 
this operon on mobilizable plasmids suggests acquisition by horizontal 
gene transfer. The similar function of NarAB and TnrB2/B3 suggests 
that NarAB may have originated as a self-resistance mechanism in 
PI-producing bacteria. However, the permease subunit NarB 
(Accession: QHA94815.1) displays 33% identity to TnrB3 (Accession: 
CAA52013.1) of Strepmomyces longisporoflavus and 30% identity to a 
putative self-resistance gene (Accession: WP_030553101.1) of the 
narasin producing Kitasatospora aureofaciens (our unpublished data). 
This suggests that if the gene originates from horizontal gene transfer 
from PI-producing bacteria it would have been an early event 
predating the use of ionophores in animal husbandry. Alternatively, 
narAB originates from a so far unidentified bacterium, and it cannot 

be excluded that it has divergently evolved from an operon that is 
intrinsic to a species of enterococci.

2.2.2 Mutations giving rise to PI-resistance
In a screen for natural compounds displaying in vitro anti-

mycobacterial activity, Huang et al. (2017) identified the PIs nigericin, 
calcimycin (A23187), and salinomycin as hits. Spontaneous mutants 
of Mycobacterium spp. resistant to nigericin and calcimycin were 
isolated on selective plates. Deleterious mutations in a tetR family 
regulator resulted in resistance to both PIs, while a non-synonymous 
mutation in nhaA resulted in resistance to nigericin. Mutation of the 
tetR regulator led to increased transcription of an RND family efflux 
pump hypothesized to export the PIs, while mutation in nhaA 
encoding a homolog of Na+/H+-antiporter likely compensates for a 
disrupted sodium gradient.

Wollesen et al. (2023) grew Staphylococcus aureus in the presence 
of the PI nanchangmycin with the intention to isolate mutants 
resistant to PIs and to identify potential resistance mechanisms. 
Nanchangmycin-resistant mutants carried mutations in genes 
encoding a potassium importer TrkH, a transcriptional activator 
involved in regulating autolysis SarV, and a membrane stabilizing 
protein MspA. Interestingly, the authors did not detect cross-
resistance in these mutants to salinomycin, lasalocid, or calcimycin. 
To gain further insight into the resistance mechanisms, a methicillin-
resistant S. aureus transposon mutant library was screened for 
increased sensitivity to lasalocid, salinomycin, calcimycin, and 
nanchangmycin. Mutations in the electron transport chain (ETC) 
genes qoxABC, nhd2, and cyoE, conferred a modest increase in 
sensitivity toward lasalocid, salinomycin, and nanchangmycin 
(Wollesen et al., 2023). These findings indicate a role of the ETC in 
PI-resistance in S. aureus, potentially to meet the high demand for 
energy to uphold cation homeostasis across the cell membrane.

Recently, spontaneous mutants with reduced susceptibility to 
monensin were isolated after growth of clinical S. aureus isolates 
under laboratory conditions. Mutations were found in different genes, 
such as apt encoding an adenine phosphoribosyltransferase, purR, 
encoding a repressor of nucleotide biosynthesis, and non-synonymous 
mutations in different genes of the mnh operon encoding a Na+/H+ 
antiporter (Dan I. Andersson, personal communication, March 9, 
2023; published with permission). While apt and purR theoretically 
are involved in compensating for increased need for ATP to counteract 
a PI-induced cation imbalance, the mnh mutations are likely directly 
compensating for a disrupted transmembrane chemical gradient.

2.3 PI-resistance due to altered bacterial 
physiology

Persister cells and biofilm formation are mechanism considered 
to play key-roles in persistence of bacteria in different environments 
including the human host (chronic infections) and causing 
antimicrobial treatment failures (Olivares et al., 2013). Wollesen et al. 
(2023) analyzed the antimicrobial effect of PIs on a laboratory-
induced persister phenotype and preformed biofilms of S. aureus. 
They observed that in general both persister cells and biofilms were 
more resistant to PIs compared to exponentially growing bacteria. 
Interestingly, persister cells were susceptible to lasalocid, and biofilms 
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were susceptible to lasalocid, calcimycin, and nanchangmycin 
(Wollesen et al., 2023).

In the gram-positive bacteria Clostridium aminophilum F, 
Clostridium perfringens, E. faecalis, and E. faecium and in the gram-
negative species Prevotella ruminants, adaptation to growth in 
monensin was associated with thickening of the cell wall (Callaway 
and Russell, 1999; Rychlik and Russell, 2002; Simjee et al., 2012). The 
observed increase in cell wall thickness was reversed after passage in 
monensin-free medium and the authors concluded that monensin 
resistance was due to physiological changes rather than mutations 
(Simjee et al., 2012). However, it should be noted that this was not 
confirmed by whole genome sequencing.

3 Relationship between PI resistance 
and resistance to medically important 
antimicrobials

Since PIs are currently not utilized to combat bacterial infections 
in humans due to cytotoxicity, the prevalence of PI-resistance in 
bacterial isolates from animals has not been considered a threat to 
public health. However, use of PIs in animal husbandry and 
PI-resistance can contribute to resistance to medically important 
antimicrobials if PI-resistance confers cross-resistance or co-resistance 
to antimicrobials used to treat infections in humans. While cross-
resistance occurs in a microbe carrying a resistance mechanism 
conferring resistance to structurally different antibiotics, co-resistance 
arises if genes encoding resistance mechanisms for different 
antimicrobials are genetically linked.

3.1 Sparse evidence of cross-resistance 
between PIs and medically important 
antimicrobials

The ruminal bacterium C. aminophilum that had been adapted to 
grow in monensin or lasalocid, was only resistant to the cell-wall 
acting bacitracin out of 16 tested medically relevant antibiotics 
(Houlihan and Russell, 2003). Interestingly, these results are in 
agreement with a strong association between narasin resistance and 
bacitracin resistance as discovered in Enterococcus spp. isolates from 
broilers in Norway (NORM/NORM-VET 2004, 2005). However, it 
was shown that NarAB does not confer cross-resistance to bacitracin, 
suggesting two separate AMR mechanisms for these antimicrobials in 
enterococci (Naemi et  al., 2020). As described above, the gram-
negative bacterium P. ruminicola, adapted to grow in the presence of 
tetronasin, displayed a moderately reduced (65%) susceptibility to the 
glycopeptide avoparcin (Newbold et al., 1992). The cross-resistance 
between tetronasin and avoparcin was likely due to changes in the 
porins of the outer membrane. Some of the mutants of S. aureus that 
are resistant to monensin due to mutations in apt, purR, or mnh 
displayed minor changes in resistance to antimicrobials used to treat 
infections in humans (Dan I. Andersson, personal communication, 
March 9, 2023; published with permission). These resistance 
mechanisms have not been characterized in detail and a mechanism 
of cross-resistance to medically relevant antimicrobials have not 
been confirmed.

Naemi et  al. (2020) tested the resistance profile of E. faecium 
carrying the narAB operon on a plasmid under control of the natural 

promoter and compared it to the resistance profile of the isogenic 
strain carrying the vector control. They detected no difference between 
the two strains in minimum inhibitory concentration (MIC) values of 
any of the tested medically important antimicrobials, suggesting that 
NarAB does not confer resistance to antimicrobials used in human 
medicine (Naemi et al., 2020).

3.2 Co-resistance of PIs and medically 
important antimicrobials

Vancomycin-resistant E. faecium has regularly been isolated at low 
levels from broilers in Norway and Sweden using a selective isolation 
method (NORM/NORM-VET 2004, 2005; SWEDRES/SVARM 2013, 
2014). All of these vancomycin-resistant enterococci (VRE), which 
carry vanA, were also resistant to narasin and carried the narAB genes 
(Nilsson et al., 2012; Simm et al., 2019). Filter mating experiments 
showed that vancomycin and narasin resistance were frequently 
co-transferred to a recipient (Nilsson et al., 2016; Naemi et al., 2020). 
Comparative genomics revealed that narAB and vanA can 
be physically linked on transferrable plasmids (Johnsen et al., 2005; 
Nilsson et al., 2016).

A study from the Netherlands on 35 E. faecium and 61 
Enterococcus faecalis isolates from poultry products found statistically 
significant correlations between phenotypic resistance to salinomycin, 
tetracycline, and erythromycin in both species (Pikkemaat et  al., 
2022). Sequencing of a selection of 20 isolates revealed that narAB was 
present in all of the salinomycin-resistant isolates of both E. faecium 
and E. faecalis. In the E. faecalis isolates, narAB was physically linked 
with ermB (conferring macrolide resistance) and tet(L) and tet(M) or 
tet(O) (tet-genes confer resistance to tetracycline) on plasmids 
(Pikkemaat et al., 2022), confirming the co-occurrence of resistance 
genes. The correlation between salinomycin and tetracycline resistance 
aligns with a metagenomics study in which narasin-fed chickens were 
enriched for bacteria encoding tetracycline resistance genes, 
suggesting that narasin and tetracycline resistance are co-selected 
(Plata et al., 2022). Taken together these data provide strong evidence 
for transferrable co-resistance of PIs and medically 
important antimicrobials.

4 Prevalence of PI-resistant bacteria in 
animals and risks for human health

The worldwide prevalence of PI-resistance is challenging to assess 
because resistance to PIs is not reported systematically, and large-scale 
surveys of resistance has not been performed. However, a few 
countries in Europe have regularly reported on the prevalence of 
PI-resistance in indicator bacteria such as the opportunistic pathogens 
E. faecium and E. faecalis isolated from animals or animal products.

4.1 Prevalence of PI-resistant bacteria in 
animals

In a Dutch report from 2022, the authors analyzed the 
antimicrobial susceptibility of E. faecium and E. faecalis from an 
in-house collection of isolates gathered in the years 2013, 2016, 2018, 
and 2020. They reported that 31% of E. faecium and 23% of E. faecalis 
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isolates collected from broilers and broiler products of conventionally 
reared poultry displayed a MIC of salinomycin >2 mg/L, while 48.6% 
of E. faecium and 47.5% of E. faecalis, displayed a MIC value 
>1 mg/L. The authors performed whole genome sequencing of a 
subset of the isolates and discovered that all isolates with a MIC 
>1 mg/L carried plasmids encoding the PI-resistance genes narAB 
(Pikkemaat et al., 2022). Based on this, it was suggested that the cut-off 
value for salinomycin defining a non-wild-type should be adjusted to 
>1 mg/L. The Dutch AMR monitoring program (MARAN) historically 
used a MIC of 4 mg/L as cut-off for resistance and reported the 
number of resistant isolates for each year. The proportion of resistant 
E. faecium and E. faecalis isolates from Dutch broilers varied between 
41.3–81.7% and 3.9–34.5%, for E. faecium and E. faecalis, respectively, 
in the years 2004–2014 (Figure 2; MARAN, 2023). Applying a cut-off 
of >1 mg/L in place of >4 mg/L to the MIC results from the last 
MARAN report to document salinomycin resistance, increased 
resistance rates from 5.6 to 61.9% and 38.5 to 84.6% for E. faecalis and 
E. faecium, respectively (MARAN, 2014). The Danish surveillance 
program (DANMAP) reported during the same period that their 
proportion of isolates from broilers with an MIC of salinomycin 
>4 mg/L varied between 50 and 74.8% for E. faecium and 0–10.5% for 
E. faecalis (Figure 2; DANMAP, 2023). Considering the results of 
Pikkemaat et al. that cut-off values as low as 1 mg/L correlated with 
occurrence of the narAB resistance operon, the occurrence of 
PI-resistant enterococci in both Denmark and the Netherlands must 
be regarded as significantly higher than previously reported.

In Norway and Sweden, narasin was used in the test-panels for 
surveillance of PI resistance in indicator enterococci. In Sweden, 77% 
of E. faecium and 27% of E. faecalis isolated from broilers in 2014 were 
considered narasin-resistant with MIC over the EUCAST 
epidemiological cut-off (ECOFF) value (>2 mg/L) (SWEDRES/
SVARM 2013, 2014). The prevalence of resistant isolates varied in the 
years 2000–2014 with 77–93.3% for E. faecium and 22.7–44.9% for 

E. faecalis (Figure 2) (SWEDRES-SVARM, 2023). This is similar to the 
situation in Norway, where 61–91% of the E. faecium isolates from 
broilers were resistant to narasin in the years 2002–2014 (Figure 2) 
(NORM/NORM-VET, 2023). Since PIs are not currently used in 
human medicine, most countries have removed PIs from the AMR 
test panels in monitoring of indicator enterococci. However, due to a 
decision by the poultry industry in Norway to remove PIs as feed 
additives in conventional rearing of broilers in 2015, occurrence of 
narasin resistance in E. faecium and E. faecalis was monitored in 2018 
and 2020 to follow the development after discontinuation. The 
occurrence of narasin-resistant E. faecium isolates was reduced from 
>90% in 2014 to 24.7% in 2018 and 15.6% in 2020 (NORM/
NORM-VET 2018, 2019; Simm et al., 2019; NORM/NORM-VET 
2020, 2021). These data strongly suggests that in-feed PIs select for 
PI-resistant enterococci in broilers, a conclusion that is supported by 
a controlled study comparing occurrence of PI-resistant enterococci 
in broilers fed diets with and without PIs (Simm et al., 2019).

DANMAP reported that 0 of 1,349 E. faecalis isolates and 1 of 
1,217 E. faecium isolates collected from pigs between 2004 and 2013 
had a MIC of salinomycin >4 mg/L (DANMAP, 2023). The Norwegian 
monitoring program for AMR in the veterinary sector (NORM-VET) 
reported that 0 and 3.2% of E. faecalis and E. faecium pig isolates were 
resistant to narasin (MIC >2 mg/L) in 2004, 2008, and 2009 (NORM/
NORM-VET 2004, 2005; NORM/NORM-VET 2008, 2009; NORM/
NORM-VET 2009, 2010). Similarly, narasin resistance was detected 
in only 2% of E. faecium isolates from layers in Norway in 2013 
(NORM/NORM-VET 2013, 2014). Enterococcus faecium and 
E. faecalis collected from turkeys in Norway in 2007, 2013, and 2020 
displayed 76.2 and 7.3% narasin-resistant isolates, respectively 
(NORM/NORM-VET 2007, 2008; NORM/NORM-VET 2013, 2014; 
NORM/NORM-VET 2020, 2021). PIs have not been used in rearing 
of pigs or layers in the sampling period, but turkeys were fed a diet 
containing monensin. In the Netherlands, the prevalence of 

FIGURE 2

Comparison of the proportion of polyether ionophore resistant isolates from conventionally reared broilers of Enterococcus faecium and 
Enterococcus faecalis in four European countries sorted by year. The data were retrieved from the reports of the surveillance programs of each 
country (MARAN, The Netherlands; DANMAP, Denmark; SVARM, Sweden; NORM-VET, Norway). Cut-off values used were  >  4  mg/L for salinomycin, 
and  >  2  mg/L for narasin. Note that these cut-off values are higher than the values proposed to correlate with the narAB resistance genes by Pikkemaat 
et al. (2022) and Nilsson et al. (2016) and the results likely underestimate the true prevalence of PI resistant isolates in broiler populations.
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salinomycin resistant enterococci has steadily declined since 2006, 
when use of salinomcyin was banned in rearing of pigs. These data 
further support that in-feed PIs select for PI-resistant bacteria.

In Norway, the glycopeptide avoparcin was used as a feed additive 
in broiler production between 1986 and 1995 (Borgen et al., 2000b). 
Vancomycin resistance provides cross resistance against avoparcin 
and use of avoparcin as a feed additive avidly selected for VRE in 
Norwegian broilers (Kruse et al., 1999). In 2000, it was still possible 
to isolate VRE from 99% of sampled broiler farms in Norway by 
plating samples directly onto agar supplemented with vancomycin 
(Borgen et al., 2000a). This selective method has also been used in the 
Swedish and Norwegian surveillance programs. Data from Norway 
showed decreasing detectable occurrence of VRE in broilers between 
2002 and 2014 and non-detectable levels since 2018. Avoparcin has 
not been used in Sweden since the ban of antimicrobial growth 
promoters in 1986. The occurrence of VRE in Swedish broiler flocks 
first increased in the early 2000, reached a peak at >40% in 2005 
(Nilsson et  al., 2019) and has decreased since then. VRE were 
detected in 11% of samples from Swedish broilers in 2015 (Nilsson 
et al., 2019) and 6% of the samples in 2020 (SWEDRES/SVARM 2020, 
2021). Corresponding data does not exist for other European 
countries since the national surveillance programs have not used the 
selective method of isolation.

Considering that all VRE in Norway and Sweden are co-resistant 
to narasin, the fact that VRE has not been detected in Norwegian 
broilers after the discontinuation of prophylactic use of in-feed 
narasin, and the continued detection of VRE in Swedish broilers fed 
narasin in the same time period, is strong evidence that narasin selects 
for VRE in these broiler production systems. It should be noted that 
there has been a continuous decline in occurrence of VRE in both 
Norway (between 2002 and 2014) and Sweden (between 2005 and 
2020) despite use of narasin as a feed additive. This does not contradict 
the selection pressure of narasin for VRE co-resistant to PIs. VRE have 
only been detected occasionally and at very low levels by non-selective 
methods (0.14 and 0.75% in Sweden and Norway, respectively from 
2000 to 2020). This means that VRE represent a very small proportion 
of the narasin resistant population of enterococci. Therefore, it is fair 
to assume that the apparent occurrence of VRE decreases over time 
even under narasin selection pressure as long as VRE are not 
re-introduced into the broiler production system.

4.2 Occurrence of PI-resistant bacteria in 
humans and risks for human health

One in 50 E. faecium isolates from healthy human volunteers 
sampled in Denmark in 2005 displayed an MIC of salinomycin 
>4 mg/L (DANMAP 2005, 2006). Interestingly, one isolate from the 
same material was also vancomycin resistant. Considering that all 
VRE isolated from broilers in Norway are also PI-resistant, it is 
tempting to speculate that the VRE isolate from healthy humans in 
Denmark was the same isolate that was salinomycin resistant. 
Furthermore, in depth analysis of WGS data from three large 
collections of enterococci reveals that narAB is also found in human 
isolates, including clinical isolates, though at low prevalence 
(Gouliouris et  al., 2018; Arredondo-Alonso et  al., 2020; Pöntinen 
et al., 2021). This clearly shows that even though PIs have never been 

used in human medicine, PI resistant isolates can colonize humans 
and cause invasive infections.

Several reports have demonstrated the temporary colonization of 
human intestine with antimicrobial-resistant E. faecium and E. faecalis 
transmitted by direct or indirect animal contact or by meat 
consumption (Bortolaia and Guardabassi, 2015) including narasin-
resistant VRE (Johnsen et  al., 2005; Sørum et  al., 2006). Such 
temporary colonization could allow for transfer of antimicrobial 
resistance genes from isolates of animal origin to bacteria in the 
human host, such as in the case of vanA-encoding E. faecium (Lester 
et al., 2006). Plasmids encoding narasin and vancomycin resistance 
have been shown to transfer readily from poultry derived VRE to 
human isolates of E. faecium in a mouse model (Dahl et al., 2007). 
Transfer was observed within a day after inoculation of the donor 
strain. Plasmids from enterococci can also spread to other human 
pathogens. Experimental transfer of vancomycin resistance from 
E. faecium to S. aureus has for instance been demonstrated on mouse 
skin (Noble et al., 1992). Clinical isolates of vancomycin-resistant 
S. aureus (VRSA) from humans are often accompanied by VRE (Cong 
et al., 2020) and genomic comparisons have demonstrated that the 
vanA locus can transfer from plasmids of VRE and be stably integrated 
into the chromosome of S. aureus to create VRSA (Haas et al., 2023). 
This demonstrates that temporary colonization of humans by resistant 
bacteria of animal origin can pose a threat to human health even if the 
animal derived strain does not stably colonize the human host or 
cause infection in humans.

High prevalence of PI-resistance has mostly been documented for 
the indicator bacteria and prevalent nosocomial opportunistic 
pathogens, E. faecium and E. faecalis, collected from farm animals in 
Scandinavia and the Netherlands. However, PI resistance is likely 
globally widespread in enterococci from animals fed diets 
supplemented with PIs, and potentially also present in other 
opportunistic pathogens, such as S. aureus. So, although the available 
evidence does not indicate a major transmission of PI resistant 
bacteria from poultry to humans, transmission does occur and may 
be more pronounced in countries with practices for animal husbandry 
that differ from the regulations set by the European Union.

There are still major knowledge gaps on the risks associated with 
PI resistance for human health: (1) The global consumption level of 
PIs and hence the potential selection pressure for PI-resistance in 
different parts of the world are unknown since data on use of PIs in 
animal husbandry is not reported in most countries; (2) The frequency 
of PI resistance among isolates from human infections is unknown 
since these isolates are rarely tested for PI susceptibility; (3) The 
carriage rate of PI-resistant bacteria in humans is unknown. The 
proportion of PI-resistant bacteria in a microbiota not exposed to a 
selection pressure may be low and selective identification methods are 
required to assess the prevalence of PI resistance; (4) The distribution 
of PI resistance and the potential for dissemination of the resistance 
mechanism(s) among human pathogens are unknown. PI-resistance 
has mainly been tested in gram-positive indicator bacteria 
(enterococci) from production animals. Systematic studies from 
different environments and different parts of the world are needed to 
properly assess the risks; (5) The PI resistance mechanism(s) must 
be identified and characterized in detail and the full complement of 
resistance mechanisms to medically important antimicrobials that 
exist on PI-resistance plasmids should be determined.
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5 Conclusion

Bacteria can become resistant to PIs through horizontal gene 
transfer of resistance genes and by mutations of intrinsic genes. So far, 
none of the putative resistance mechanisms have been characterized 
in detail. However, accumulating evidence suggests that several 
mechanisms can confer resistance to PIs, including efflux of PIs from 
the cell, upregulation of cation transporters counteracting the action 
of the PI and reduced permeability of PIs into the cell. The narAB 
operon is localized on transferrable plasmids in the human 
opportunistic pathogens E. faecium and E. faecalis. These plasmids 
have been shown to carry various resistance mechanisms to 
antimicrobials used in human medicine. Use of PIs in rearing of 
production animals provides a selection pressure that promotes 
expansion of a PI-resistant population of bacteria and persistence of 
co-localized resistance mechanisms. PI-resistant bacteria can colonize 
humans and cause invasive infections and the PI resistance plasmids 
can spread in bacterial populations, both in vitro and in vivo. 
Therefore, there is a potential risk associated with the use of in-feed 
PIs, though more research is needed to explore this further to be able 
to conduct a thorough risk assessment with a One Health perspective.
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