
Citation: Turner, A.D.; Beach, D.G.;

Foss, A.; Samdal, I.A.; Løvberg,

K.L.E.; Waack, J.; Edwards, C.;

Lawton, L.A.; Dean, K.J.; Maskrey,

B.H.; et al. A Feasibility Study into

the Production of a Mussel Matrix

Reference Material for the

Cyanobacterial Toxins Microcystins

and Nodularins. Toxins 2023, 15, 27.

https://doi.org/10.3390/

toxins15010027

Received: 16 November 2022

Revised: 15 December 2022

Accepted: 23 December 2022

Published: 30 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

toxins

Article

A Feasibility Study into the Production of a Mussel Matrix
Reference Material for the Cyanobacterial Toxins Microcystins
and Nodularins
Andrew D. Turner 1,* , Daniel G. Beach 2 , Amanda Foss 3 , Ingunn A. Samdal 4 , Kjersti L. E. Løvberg 4,
Julia Waack 1,5, Christine Edwards 5, Linda A. Lawton 5, Karl J. Dean 1 , Benjamin H. Maskrey 1

and Adam M. Lewis 1

1 Centre for Environment Fisheries and Aquaculture Science, Barrack Road, Weymouth DT4 8UB, UK
2 Biotoxin Metrology, National Research Council Canada, Halifax, NS B3H 3Z1, Canada
3 Greenwater Laboratories, 205 Zeagler Drive, Suite 302, Palatka, FL 32177, USA
4 Norwegian Veterinary Institute, 1431 Ås, Norway
5 CyanoSol, School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen AB10 7GJ, UK
* Correspondence: andrew.turner@cefas.co.uk

Abstract: Microcystins and nodularins, produced naturally by certain species of cyanobacteria, have
been found to accumulate in aquatic foodstuffs such as fish and shellfish, resulting in a risk to
the health of the seafood consumer. Monitoring of toxins in such organisms for risk management
purposes requires the availability of certified matrix reference materials to aid method development,
validation and routine quality assurance. This study consequently targeted the preparation of a
mussel tissue reference material incurred with a range of microcystin analogues and nodularins. Nine
targeted analogues were incorporated into the material as confirmed through liquid chromatography
with tandem mass spectrometry (LC-MS/MS), with an additional 15 analogues detected using LC
coupled to non-targeted high resolution mass spectrometry (LC-HRMS). Toxins in the reference
material and additional source tissues were quantified using LC-MS/MS, two different enzyme-
linked immunosorbent assay (ELISA) methods and with an oxidative-cleavage method quantifying
3-methoxy-2-methyl-4-phenylbutyric acid (MMPB). Correlations between the concentrations quanti-
fied using the different methods were variable, likely relating to differences in assay cross-reactivities
and differences in the abilities of each method to detect bound toxins. A consensus concentration of
total soluble toxins determined from the four independent test methods was 2425 ± 575 µg/kg wet
weight. A mean 43 ± 9% of bound toxins were present in addition to the freely extractable soluble
form (57 ± 9%). The reference material produced was homogenous and stable when stored in the
freezer for six months without any post-production stabilization applied. Consequently, a cyanotoxin
shellfish reference material has been produced which demonstrates the feasibility of developing
certified seafood matrix reference materials for a large range of cyanotoxins and could provide a
valuable future resource for cyanotoxin risk monitoring, management and mitigation.

Keywords: microcystins; nodularins; mussels; reference materials; LC-MS/MS; LC-HRMS; shellfish;
quality control

Key Contribution: For the first time a mussel tissue reference material has been prepared containing
microcystins and nodularins. Material was characterised to assess homogeneity; stability as well
as individual and total toxin content using multiple methods; showing the presence of covalently
bound toxins.

1. Introduction

Cyanobacterial blooms occur globally, affecting humans and animals through contami-
nation of water and foodstuffs with harmful toxins [1]. Toxin classes most frequently encoun-
tered are the cyclic microcystins (MCs) [2,3] the cyclic pentapeptides nodularins (NODs),
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cylindrospermopsin and the neurotoxins including anatoxins and saxitoxins [2,4–6]. MCs
and cylindrospermopsin are usually primarily described as hepatotoxins, but there is also
evidence linking these to neurotoxicity, cardiotoxicity, immunotoxicity and developmental
toxicity in a wide range of species [7,8]. MCs are produced primarily by freshwater cyanobac-
teria genera such as Microcystis, Planktothrix, Anabaena/Dolichospermum and Oscillatoria [9]
with at least 310 analogues reported in blooms, cultures and/or from biotransformation
reactions in the cell, environment or during sample processing [10–12], with increasing re-
ports of MCs found in the marine environment [13–15]. Nodularin-R (NOD-R), along with
a low number of structural analogues, is produced by Nodularia spumigena which thrives
in brackish water [16], thereby resulting in impacts in both freshwater and saline environ-
ments [17–19]. Human health impacts from cyanotoxins have occurred through drinking
from contaminated water supplies, recreational exposure, aerosol exposure under certain
meteorological conditions and through eating contaminated aquatic foodstuffs, health food
supplements, or even terrestrial foods irrigated with contaminated water [17–26]. In recent
years, the risk from cyanotoxin poisoning following human consumption of seafood con-
taminated with cyanotoxins has been highlighted, with shellfish being one of the primary
routes of toxins through to higher trophic levels [6,13,14,27–29] and in some instances with
toxin concentrations reaching dangerously high levels (reviewed by [6]).

Figure 1 illustrates the general structure of MCs and NODs, with both families contain-
ing the Adda moiety (3-amino-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4(E),6(E)-dienoic
acid [30]. The toxins act through inhibition of serine/threonine protein phosphatases
resulting in cell damage and death, with acute symptoms including gastroenteritis, neu-
rotoxicity, liver damage and potentially fatality [31,32]. Structural variations in the MCs
include most notably variable L-amino acid residues at positions 2 and 4, as indicated
by a two-letter suffix (e.g., MC-LR equating to L (leucine) and R (arginine)), although all
other residues have been found to exhibit some variability as highlighted by a prefix to the
name (e.g., [D-Asp3]MC-LR which contains D-aspartic acid at position 3) [11]. Although
health impacts from cyanotoxins are found globally, few regulations exist in global legis-
lation. The World Health Organization (WHO) has provided guideline values of 1 µg/L
and 12 µg/L thresholds for lifetime and short-term exposure, respectively, to MC-LR in
drinking waters [32,33].

Numerous approaches are published for the detection and quantitation of MCs and
NODs [34], but with the majority to date focused primarily on water or cyanobacterial sam-
ple matrices [35,36]. The most common approaches include sensitive biochemical assays
such as enzyme-linked immunosorbent assays (ELISA) [37] and protein phosphate inhibi-
tion assays (PPIA) [38], as well as instrumental chemical detection methods, primarily high-
performance liquid chromatography with photodiode array detection (HPLC-PDA) [39],
or LC coupled to mass spectrometry (LC-MS) [40–42]. Broadly speaking the biochemical
assays are able to detect a wide range of structural analogues providing a quantitative
assessment of total MC/NOD presence. Whilst PPIA methods show similar response for
both Adda and non-Adda substituted MCs, the commercial Eurofins Abraxis ELISA is inca-
pable of detecting the non Adda-substituted analogues, with cross-reactivities of <0.25% in
comparison with MC-LR [37,43]. The low cross-reactivities determined for [ADMAdda5]
and [DMAdda5]-MCs consequently evidences potential under-estimation of toxicity when
conducting ELISA quantitation [37,43]. A multihapten ELISA based on polyclonal anti-
bodies was, however, raised against a mixture of five MC analogues, resulting in wider
cross-reactivities [44]. Instrumental detection methods typically target known compounds
for which reference standards are available, although high-resolution mass spectrometry
has also been applied for non-targeted analysis of other MC analogues unavailable as
commercial standards [25,45,46], sometimes in combination with a thiol-derivatization
approaches prior to analysis [47,48].

Due to the presence of a reactive α,β-unsaturated amide functional group in the Mdha7

amino acid common to most MCs, they form conjugates with thiol-containing biomolecules
such as glutathione (GSH) and cysteine. Whilst LC-MS/MS can be used for direct measure-
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ment of these soluble small molecule conjugates [49–52], or potentially the parent toxins
following deconjugation [18], most published instrumental methods focus solely on the free
(soluble) toxins. However, there is the potential for conjugation with larger biomolecules in
seafood tissue that are not readily extractable during sample preparation [52]. For example,
non-extractable MCs are known to bind covalently to protein phosphatases and other
thiol-containing proteins in tissues [53–59], so may potentially transfer to higher trophic
levels. As such, assuming that covalently bound MCs are bioavailable and inhibit protein
phosphatases after digestion [20,60,61], detection methods are required which can quantify
both soluble and bound (total) toxins, noting the huge variability in proportions of soluble
to bound toxins reported to date [58]. Consequently, whilst ELISA and LC-MS/MS results
have been shown to compare well for algal and powdered algal product matrices [62,63],
for biological tissue samples the ELISA may return higher quantitative results than targeted
LC-MS/MS methods. This can be attributed to the MC antibodies used in the assays
cross-reacting with the conjugates as well as the potential for MS-related ion suppression,
if either matrix-matched calibrants, standard additional quantitation or isotope-dilution
recovery correction are not applied [64,65].
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Figure 1. Generalized structure of (a) MCs and (b) NOD highlighting substituents present in ana-
logues targeted in this study. Leu—Leucine, Arg—Arginine, Ala—Alanine, Tyr—Tyrosine, Hil—
Homoisoleucine, Trp—Tryptophan, Phe—Phentylalanine, Me—Methyl, HtyR—Homotyrosine. Cy-
clic NOD-R structure shown, highlighting bond broken for hydrolysis to [seco-2/3] NOD (also 
known as linear nodularin). 
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Figure 1. Generalized structure of (a) MCs and (b) NOD highlighting substituents present in
analogues targeted in this study. Leu—Leucine, Arg—Arginine, Ala—Alanine, Tyr—Tyrosine,
Hil—Homoisoleucine, Trp—Tryptophan, Phe—Phentylalanine, Me—Methyl, HtyR—Homotyrosine.
Cyclic NOD-R structure shown, highlighting bond broken for hydrolysis to [seco-2/3] NOD (also
known as linear nodularin).

A common approach to the analysis of total MCs and NODs combined (MCs + NODs)
involves the use of a specific chemical reaction called the Lemieux oxidation. This re-
action involves the catalyzed oxidative cleavage of an olefin to form two aldehydes or
ketones. For MCs + NODs this reaction yields 3-methoxy-2-methyl-4-phenylbutyric acid
(MMPB) from the Adda moiety within MCs and NOD-R, regardless of their initial amino
acid configuration, which are then detected using mass spectrometric methods such as
LC-MS/MS. This approach consequently provides a measure of total Adda-containing
MCs + NODs [66,67], irrespective of form (soluble, bound or partially degraded [65]). This
MMPB formation method has been used for this purpose in a variety of sample matrices
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including canine tissues [65] and shellfish [58,68] as well as enzymatic hydrolysis to form
soluble microcystin-conjugated peptides [69], although these irreversible reactions result in
the loss of information regarding original MC profiles. Furthermore, the method has been
further refined to incorporate oxidative cleavage for MC analogues containing modified
Adda moieties such as ADMAdda and DMAdda, resulting in the formation of oxidation
products analogous to MMPB [37].

Use of a single detection method presents risk. Non-specific biochemical methods are
associated with matrix effects, are unable to determine toxin profiles, have cross-reactivity
towards inactive metabolites and are linked to false positive detection [70–72]. Risks of
false negatives and the absence of accurate toxicity equivalence factors for many cyanotoxin
analogues [73] can affect the accuracy of targeted instrumental methods for assessing toxic-
ity levels. Furthermore, impracticalities including sample throughput and turnaround time
limitations are still associated with the potential for routine high-throughput monitoring
using non-targeted mass spectrometry methods and potentially also MMPB analysis. Con-
sequently, there are clear benefits to utilising multiple complementary detection methods
to ensure toxicity is not under- or over-estimated, ideally incorporating a measure of both
soluble and total MCs.

Noting the priority for development of complementary cyanotoxin testing methods
in complex matrices [6], before any testing methods can be implemented into monitoring
programs, extensive validation of method performance is required. In addition, routine
running of instrumental methods requires the application of a range of quality assurance
and quality control procedures. These both require the use of matrix Reference Materials
(RMs), so the availability of materials prepared from matrices of direct relevance to the
test samples is important to laboratories wishing to implement and maintain cyanotoxin
assays. Various RMs have been prepared for cyanotoxins in the past but focused on algal
matrix. These include a certified reference material (CRM) for total MCs from the National
Institute for Environmental Studies (NIES) in Japan which contained seven microcystin
variants [74], as well as a multi-analyte feasibility study RM from NRC Canada containing
seven MC analogues, anatoxins and cylindrospermopsins [75]. Multiple shellfish RMs have
been developed, characterised and even certified in recent years for marine toxins [76–89],
but to date no shellfish tissue RM exists for cyanotoxins.

The need for such a RM prompted the culturing of toxic Microcystis and Nodularia with
subsequent feeding studies in mussels in a controlled laboratory environment to assess
the uptake and depuration of toxins within mussel tissues [26], with the resulting tissue
materials utilized for RM preparation and characterization. The aim was to produce a
shellfish tissue cyanotoxin RM which was fully characterised and provided proof of concept
for future development of a fully certified shellfish RM containing a wide range of toxins
from cyanobacterial origin.

2. Results
2.1. Material Production and Initial Characterization

Cyanotoxin-contaminated mussel tissues were produced as detailed previously [26]
and as described in the methods section. A culture of Mycrocystis aeruginosa utilized
for shellfish feeding contained the microcystin (MC) variants (MC-LR, LW, LF, HilR, LY
and desmethyl MC-LR (dmMC-LR, constituting [D-Asp3]MC-LR and/or [Dha7]MC-LR).
A culture of Nodularia spumigena contained both NOD-R and smaller proportions of [seco-
2/3]NOD (referred to previously as linear NOD or L-Nod) [26]. After mussel exposure,
cyanobacteria-exposed mussel homogenates were mixed into one combined tissue for
reference material preparation and homogenised further as per Section 4.3.

Cyanotoxins initially identified in the targeted analysis of mussel tissue material
were found to be primarily NOD-R and the MC congeners MC-LR, MC-LY, MC-LF and
MC-LW, together with lower relative concentrations of MC-HilR and [D-Asp3]MC-LR
and/or [Dha7]MC-LR, with the latter two sharing Selected Reaction Monitoring (SRM)
transitions and retention times [90], so collectively referred to as dmMC-LR. Selected
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Reaction Monitoring (SRM) peaks generated following LC-MS/MS analysis are illustrated
in Figure 2, showing the chromatographic peaks in a solvent-based calibration standard
in comparison with those detected in the matrix RM. Retention times were found to be
identical in the mussel sample extract in comparison to those in the methanolic standard
as reported previously [90]. SRM transitions are summarized in Appendix A (Table A1).
Preliminary quantitative results confirmed successful uptake of toxins into the whole
combined toxic mussel tissue, with analysis showing approximate concentrations ranging
from 20 µg/kg to 940 µg/kg wet weight. Concentrations determined here and throughout
the manuscript were all calculated in terms of wet weight. Mussels from compartments
B, C and F which were not exposed to toxic cyanobacteria were also shucked and tested,
confirming the non-detection of any MCs or NODs.

2.2. Homogeneity

Table 1 shows the concentrations of cyanotoxins quantified in the homogeneity study
samples subjected to LC-MS/MS analysis following extraction of duplicate aliquots of
14 samples across the entire production batch. Data generated under repeatability condi-
tions clearly evidenced acceptable homogeneity of the RMs, given the low relative standard
deviations (RSD %) for the majority of analytes and F-test values all less than F-critical.
Appendix B shows the homogeneity control charts illustrating the distribution of individual
toxin concentrations together with mean values and associated standard deviations.

Table 1. Mean toxin concentrations (µg/kg wet weight) in mussel tissue reference material quantified
following homogeneity tests (n = 14; duplicate samples) together with associated standard deviations
(SD), percentage relative standard deviations (RSD %) and F-test values (F-critical = 2.53).

NOD-R MC-LR MC-LY MC-LF MC-LW dmMC-LR MC-HilR

Mean concentration 926 502 89.3 254 184 68.0 21.1
SD (n = 14) 27.1 17.4 2.76 8.18 5.52 3.92 2.78

RSD % 2.93 3.47 3.09 3.22 3.00 5.77 13.16
F-calc 0.54 0.47 0.67 0.52 0.42 0.50 0.77

2.3. Stability

Normalized quantitative stability data from the 181 day-long stability study are sum-
marized in Figure 3 for each of the targeted analogues present in the RM (NOD-R, MC-LR,
MC-LY, MC-LF, MC-LW and dmMC-LR). Acceptability limits were defined as three times
the standard deviation of the mean concentrations determined at time zero (n = 6). The
experimental assessment of toxin stability was assessed at both −20 ◦C and +4 ◦C, with
stability results displayed here at both storage temperatures. The most significant instabil-
ity under refrigeration was evidenced for MC-LR and dmMC-LR, where concentrations
dropped to approximately 50% and 60% of mean initial concentrations, respectively after
181 days. Significant reduction outside of acceptability limits occurred for MC-LR and
MC-LF as early as 28 days. The remaining MCs exhibited lower loss, with 74% to 90%
remaining after 181 days at +4 ◦C. Interestingly, there was no evidence for concentration
reductions for NOD-R in RMs stored in the fridge across the whole study period (Figure 3).
For RMs stored in the freezer, stability was found to be within acceptability limits for all
toxin analogues, with no evidence for concentrations dropping over the entire 181-day
period. As such there was good evidence that storing cyanotoxin mussel tissue RMs in a
freezer is suitable for maintaining the stability of analyte concentrations over the medium
to long term.
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Figure 2. Total ion chromatograms summing SRM transitions (no mass spectral smoothing) for
MCs and NOD in calibration standard (left) and mussel matrix RM (right), with peaks labelled as:
(a) [D-Asp3]MC-RR (513 > 103; 135) (b) MC-RR (520 > 102.8; 1345 (c) NOD-R (825.5 > 135; 103)
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(d) MC-YR (1045.6 > 135; 127) (e) MC-HtyR (1059.6 > 135; 107) (f) MC-LR (995.6 > 135; 127) (g) dmMC-
LR ([D-Asp3]MC-LR and/or [Dha7]MC-LR (981.5 > 135; 107)) (h) MC-HilR (1009.7 > 135; 127)
(i) MC-WR (1068.6 > 134.9; 107) (j) MC-LA (910 > 135; 107) (k) MC-LY (1002.5 > 135; 107) (l) MC-LW
(1025.5 > 135; 126.8) (m) MC-LF (986.5 > 135; 213).
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Figure 3. Cyanotoxin concentrations determined in crude extracts of wet RM tissues normalized to
mean of time zero (n = 6) over 181-day stability experiment, showing effects of RM storage in freezer
(FZ; −20 ◦C) and fridge (FR, +4 ◦C) for (a) NOD-R (b) MC-LR (c) MC-LY (d) MC-LF (e) MC-LW
(f) dmMC-LR. Max = mean at time zero plus three times the standard deviation (n = 6); min = mean
at time zero minus three times the standard deviation (n = 6).
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2.4. Toxin Quantitation

Four different quantitative methods were applied to nine different tissue samples
in order to compare quantitative results for freely-extractable soluble MCs + NODs and
additionally to assess the presence of total MCs + NODs incorporating soluble toxins,
soluble toxin-conjugates and protein-bound toxins. The samples incorporated triplicate
mussel RMs, three different raw mussel tissue homogenates from each of the three different
cyanobacterial exposure tanks (A, D and E) and a final three mussel tissue samples which
were negative controls from tanks B, C and F. Each of the nine tissue samples were ex-
tracted and analysed blind using the quantitative LC-MS/MS method [90], the multihapten
ELISA [42], the Adda ELISA using the refined approach of [65] and the GreenWater Labs
in-house MMPB LC-MS/MS assay for total MCs + NODs [37]. Mean quantitative results
for the triplicate RMs are summarised in Table 2, with full data for each individual material
shown in Appendix C.

2.4.1. LC-MS/MS

LC-MS/MS of the triplicate mussel RMs (RM1-3) returned values of 1096 ± 59 µg/kg
and 1130 ± 51 µg/kg (wet weight) for the summed concentrations of MCs and NODs,
respectively, resulting in a mean MCs + NODs combined of 2226 ± 33 µg/kg. Analysis
confirmed the detection of the MC analogues MC-LR, MC-LY, MC-LF, MC-LW, dmMC-LR
and MC-HilR as described earlier. In addition to cyclic NOD-R, the linear NOD analogue
[seco-2,3]NOD was also detected and quantified, following confirmation of its presence
by LC-HRMS, and included in the total NODs value. The three unprocessed exposed
mussel tissue samples from tanks A, D and E were found to contain different total toxin
concentrations, as expected given these were taken from separate tanks of mussels during
the exposure process (Appendix C). Samples B, C and F, prepared from mussels unexposed
to cyanobacteria contained no detectable presence of any targeted cyanotoxin analogues,
as expected. Overall, this confirmed the consistent high proportion of NOD-R and the
MC analogues MC-LR, MC-LF, MC-LW and MC-LY being the four highest MC analogues
across all samples analysed.

2.4.2. Multihapten ELISA

Total soluble MCs concentrations are also summarized in Table 2 following analysis of
the nine samples using the multihapten ELISA [44]. In terms of qualitative identification
of MC/NOD presence, the assay results agreed well with the LC-MS/MS. The three
cyanotoxin-free tissues (B, C and F) showed no response using the assay, confirming the
absence of any significant levels of MCs + NODs in the unexposed negative control tissues.
For the triplicate RMs, the mean total concentration determined was 1424 ± 148 µg/kg wet
weight (n = 3), on average 64% of the values quantified by LC-MS/MS for MCs + NODs
combined, but 130% in comparison to MCs only by LC-MS/MS. For the three contaminated
unprocessed samples, the ELISA was 27%, 39% and 66% of the LC-MS/MS result for
samples A, D and E, respectively (Appendix C).

2.4.3. Adda ELISA

Qualitatively, the Adda ELISA also agreed well with the LC-MS/MS and multihapten
ELISA data, with no toxin signal detected for any of the three unexposed toxin-free mussel
samples B, C and F. In terms of quantitative concentrations for the remaining six samples,
on average the concentrations returned by the ELISA were 94% of those by LC-MS/MS,
although there was notable variability between samples. In particular the triplicate RMs
showed values higher than LC-MS/MS, with the ELISA 160% of the LC-MS/MS on average,
whereas sample A by ELISA was 44% of the LC-MS/MS and samples D and E 57% and 74%,
respectively (Table 2).
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2.4.4. 3-Methoxy-2-methyl-4-phenylbutyric Acid (MMPB) Analysis

The MMPB method was applied to both extracts of mussel tissues for determination
of soluble toxins and to mussel tissues without extraction for determination of total toxin
concentrations. The LC-MS/MS analysis of MMPB applied following oxidation of sam-
ple extracts from non-exposed samples showed no detectable presence of the oxidation
products from MCs or NODs, therefore qualitatively agreeing with the results returned by
both ELISAs and LC-MS/MS. MMPB analysis for freely extractable (soluble) MCs + NODs
showed total concentrations on average 100 ± 15% of those total MCs + NODs concentra-
tions quantified by LC-MS/MS (Table A2; Appendix C).

For the MMPB analysis of total MCs + NODs from whole tissue samples, again no
toxins were detected in the unexposed mussel samples. For the RM tissues, total tissue
concentrations were notably higher than the soluble MCs + NODs and LC-MS/MS with
concentrations ranging from 136% to 215% (mean = 181 ± 27%) in comparison to the
soluble MMPB results. Consequently, the comparison between soluble and total toxin data
following MMPB analysis indicates that protein-bound or unextractable toxins can account
for more than 50% of the total toxin content within the mussel tissues used for preparation
of the cyanotoxin RM (Figure 4).
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Figure 4. Bar chart showing mean toxin concentrations (µg/kg wet weight) quantified in RMs using
the five quantitative methods: LC-MS/MS (showing results for total MCs only, total NODs only and
total MCs + NODs combined), multihapten ELISA, Adda ELISA, MMPB for soluble MCs + NODs
in extracts and MMPB for total MCs + NODs in RM tissues. Error bars show standard deviations
associated with mean results (n = 3).
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Table 2. Summary of mean MCs + NODs concentrations (n = 3) with associated standard deviation
(SD) and percent relative standard deviation (RSD %) and mean total toxin concentrations (µg/kg
wet weight) in crude extracts of LRM following analysis by four techniques: LC-MS/MS, multihapten
ELISA, Adda ELISA and MMPB for soluble and total toxins.

Mean SD RSD %

NOD-R 938 43 4.5
[seco-2/3]-NOD 192 12 6.3

MC-LR 496 33 6.6
MC-LY 99 4.0 4.1
MC-LF 238 19 8.2
MC-LW 192 12 6.1

MC-HilR 15 4.0 26.7
dmMC-LR 56 5.6 9.9

Sum of all MCs by LC-MS/MS 1096 59 5.4
Sum of NODs by LC-MS/MS 1130 51 4.6

Sum of all MCs + NODs combined by LC-MS/MS 2226 33 1.5
Corrected concentration incorporating additional

analogues determined by LC-HRMS 2393 35 1.5

Multihapten ELISA 1424 148 10.4
Adda ELISA 3571 219 6.1

MMPB—soluble MCs + NODs 2414 316 13.1
MMPB—total MCs + NODs 3828 123 3.2

2.5. Non-Target Toxin Analysis

Filtered methanolic extracts of the RM were further assessed by high resolution
mass spectrometry (HRMS) using a data independent acquisition screening method. This
relied on detection of characteristic microcystin product ions (e.g., m/z 135.0804, 213.0870,
375.1915) during sequential fragmentation of all precursor ions using 62 m/z selection
windows. Subsequently, targeted MS/MS analyses were undertaken to obtain confirmatory
data on any suspected targets. LC-HRMS/MS analysis confirmed the presence of all
targeted analogues described by the LC-MS/MS approach above. Table 3 lists the targeted
analogues in order of chromatographic peak area, as well as mass accuracy in relation to
theoretical accurate mass. All positive identifications had product ion m/z within 5 ppm of
theoretical values, and were all confirmed with MS/MS experiments, thereby providing
excellent additional confirmation of the primary cyanotoxins present in the RM. The LC-
HRMS analysis also confirmed the small relative proportion of [Dha7]MC-LR, which was
not separated from [D-Asp3]MC-LR using the LC gradient used in targeted LC-MS/MS,
and thereby provided additional evidence for the presence of both co-eluting dmMC-LR
analogues, with a ratio of 1 to 0.14 between [D-Asp3]MC-LR and [Dha7]MC-LR (Table 3).
Appendix D illustrates the LC-HRMS chromatograms obtained for those MCs and NODs
measured by targeted LC-MS/MS.

Table 3. Microcystin (MC) and nodularin (NOD) analogues detected in mussel matrix RM using
LC-HRMS showing compounds detected by targeted LC-MS/MS and additional putative MCs
detected by LC-HRMS, associated retention times (R.T), determined pseudomolecular ions in positive
electrospray mode [M + H]+, the theoretical mass and consequent mass error (ppm), together with
percentage peak area relative to NOD-R.

Analogue a R.T.
(min) [M + H]+ Theoretical

m/z
Mass Error

(ppm)
Peak Area (%)

Relative to NOD-R

Targeted LC-MS/MS NOD-R 6.25 825.4497 825.4505 −0.96 100
MC-LR 7.18 995.5561 995.5560 0.10 48
MC-LF 17.77 986.5219 986.5233 −1.4 40
MC-LW 17.18 1025.5325 1025.5342 −1.7 37
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Table 3. Cont.

Analogue a R.T.
(min) [M + H]+ Theoretical

m/z
Mass Error

(ppm)
Peak Area (%)

Relative to NOD-R

MC-LY 15.3 1002.5176 1002.5183 −0.70 12
[D-Asp3]MC-LR 6.90 981.5413 981.5404 0.92 3.6
[seco-2/3]NOD 4.35 843.4642 843.4611 3.7 3.2
[Dha7]MC-LR 7.17 981.5414 981.5404 1.0 0.51

MC-HilR 7.43 1009.5729 1009.5717 1.2 0.43
LC-HRMS [D-Asp3]MC-LW 16.60 1011.5170 1011.5186 −1.6 7.1

[D-Asp3]MC-LF 17.12 972.5076 972.5077 −0.10 6.0
MC-LM(O) 12.89 986.4910 986.4903 0.71 2.2
MC-LW(O) 16.09 1041.5284 1041.5292 −0.73 2.0
dmNOD-R 5.93 811.4353 811.4349 0.46 1.9

MC-LM 16.87 970.4966 970.4954 1.2 1.8
MC-LW(O) 15.75 1041.5299 1041.5292 0.67 1.1
dmNOD-R 5.60 811.4355 811.4349 0.69 1.0
dmNOD-R 4.79 811.4361 811.4349 1.5 0.46

[seco-2/3]dmNOD 4.02 829.44822 829.4454 3.4 0.39
[Dhb5]NOD 6.25 811.4350 811.4349 0.099 0.30

MC-LR + H2O 6.85 1013.5667 1013.5666 0.099 0.27
MC-LR isomer 6.68 995.5570 995.5560 0.95 0.16
MC-LR + H2O 7.12 1013.5678 1013.5666 1.1 0.048
NOD isomer 6.69 825.4524 825.4505 2.3 0.047

a Analogue name prefix “dm” denotes desmethylation at an unspecified position. Analogue suffix “(O)” indicates
oxygen addition at an un-specified position to the amnio acid immediately preceding it.

In addition to the nine targeted analogues confirmed by LC-HRMS, the analysis re-
vealed the presence of multiple additional toxin analogues (Table 3), none of which were
available as standards for additional confirmation. The two compounds resulting in the
highest peak areas were [D-Asp3]MC-LW and [D-Asp3]MC-LF, present at 7.1% and 6.0% of
the peak area of NOD-R, respectively. Other analogues included the methionine substituted
MC-LM, together with oxidized variants of MC-LM and MC-LW and several desmethyl
NOD-R isomers including [Dhb5]NOD, and at relative proportions of <0.5% NOD-R peak
area, several putative MC-LR isomers. These minor toxin analogues detected by untargeted
LC-HRMS/MS represent approximately 7.5% correction to the summed “MCs + NODs”
concentrations as measured by targeted LC-MS/MS and presented in Table 2. This correc-
tion brings the LC-MS results in closer agreement with those from the Adda ELISA and
MMPB, though would not be expected to account for contributions from bound MCs in the
“total MCs + NODs” measurement by the MMPB method. Figure 5 shows the LC-HRMS
chromatograms for the analogues detected only by LC-HRMS, listed in Table 3. Small
molecule conjugates between the targeted MCs and thiols such as cysteine, glutathione and
its degradation products that have been detected previously in high-level bloom samples
were not detected in methanolic extract of the RM [51,52].

Subsequently, a second targeted LC-MS/MS method was set up to detect the minor cyan-
otoxin analogues detected by untargeted LC-HRMS, using the diagnostic m/z 135 product ion.
The analogues incorporated were dmNOD (811.4 > 134.9), [seco-2/3]dmNOD (829.4 > 134.9),
MC-LM (970.5 > 134.9), [D-Asp3]MC-LF (972.5 > 134.9), [D-Asp3]MC-LW (1011.5 > 134.9)
and the two oxidized analogues of MC-LY and MC-LW (1018.5 > 134.9 and 1041.5 > 134.9,
respectively) (Appendix A). Results showed SRM peaks indicative of the majority of these
analytes, with the exception of MC-LM where no clear peaks were observed. Conversely,
peaks of high intensity were seen particularly for dmNOD/ [Dhb5]NOD, where multiple
peaks were detected (Appendix E), consistent with LC-HRMS results.
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2.6. Consensus Concentrations

Concentrations of total soluble MCs + NODs determined using the four independent
measurement methods were statistically assessed in order to generate a consensus value.
The NIST Decision Tree (NDT) approach [91] based on [92] was utilized, by entering the
measured values, associated standard uncertainties and measurement degrees of freedom
(Table 2). Concentrations used were the multihapten ELISA, LC-MS/MS (adjusted for
additional minor analogues), MMPB for soluble toxins and the Adda ELISA. The Cochran’s
test [93] for data homogeneity demonstrated heterogeneous results (p < 0.001), so data
homogeneity was not assumed. Symmetry and normality were both evidenced with
application of the Miao-Gel-Gastwirth test of symmetry (p = 0.12) and the Shapiro–Wilk
test of normality (p = 0.74), respectively [94,95]. Consequently, a Hierarchical Lapalace-
Gauss fit model was used. The consensus estimate was 2425 µg/kg wet weight with an
associated standard uncertainty of 575 µg/kg, with 95% coverage intervals of 1285 µg/kg
and 3566 µg/kg. Raw output from the assessment is shown in Appendix F, Figure A4 and
Appendix G, Figure A5.

3. Discussion
3.1. RM Preparation

Given increasing reports of cyanotoxins in edible aquatic organisms such as finfish and
shellfish, e.g., [20,96,97] and subsequent impacts on human health, it is becoming more im-
portant to develop fit-for-purpose approaches for evaluating cyanotoxin presence in these
complex biological matrices [34]. Accredited, validated routine testing methods require the
application of strict quality assurance/control process, incorporating amongst other things,
the analysis of positive control matrix materials. As such, this study targeted the produc-
tion of a shellfish material containing both MCs and NODs, for use in routine analysis of
samples harvested from shellfisheries impacted by potentially toxigenic cyanobacteria.

Given the practical challenges associated with collecting marine or estuarine shellfish
naturally contaminated with freshwater cyanobacterial toxins, the laboratory-controlled
exposure approach conducted through feeding mussels with toxigenic Microcystis and Nodu-
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laria resulted in mussel tissues containing a range of different toxins. LC-MS/MS quantita-
tion confirmed the presence of the microcystin analogues MC-LR, MC-LY, MC-LF, MC-LW,
dmMC-LR ([D-Asp3]MC-LR and/or [Dha7]MC-LR) and MC-HilR together with the NODs,
NOD-R and [seco-2/3]NOD. LC-HRMS with a 30 min run time confirmed the presence
of these analogues, as well as detecting both dmMC-LR analogues [D-Asp3]MC-LR and
[Dha7]MC-LR which co-eluted under the implemented LC conditions. Toxins present at
highest concentrations were the nodularins NOD-R and [seco-2/3]NOD (938 ± 43 µg/kg
and 192 ± 12 µg/kg, respectively), along with the MCs MC-LR (496 ± 33 µg/kg), MC-
LF (238 ± 19 µg/kg), MC-LW (192 ± 12 µg/kg) and MC-LY (99 ± 4.0 µg/kg), with all
concentrations expressed in terms of wet weight. As such, the targeted toxin analogues
present in this shellfish RM are those commonly encountered in tissue samples following
cyanobacterial blooms around the world (e.g., [97]).

3.2. Method Comparisons

In terms of qualitative detection, the methods applied in this study all successfully dis-
tinguished between toxic and non-toxic mussel tissues. Such a screening approach would
at least provide a useful first step in the assessment of food safety following a potential
cyanotoxin exposure event. Statistical analysis demonstrated that method choice did have
a significant effect on quantitative results generated, albeit on a low number of samples
(Appendix G). This concurs with reports from various authors (e.g., [23,27]) who have
reported that MC concentrations were significantly different for fish tissue samples when
analyzing using different testing methods, with advantages and disadvantages associated
with available methods [63]. ELISA methods, whilst quantitative, have previously been
referred to as semi-quantitative, given the cross-reactivity with inactive MC metabolites
and potential matrix effects [71,72]. Targeted and specific approaches using LC-MS/MS
methods benefit from a high degree of specificity and sensitivity so are highly appropriate
for MC quantitation [71,98]. The LC-MS/MS method applied in this study was fully vali-
dated in mussel matrix and demonstrated excellent method recovery as well as the lack
of any significant matrix effects from the mussel tissue matrix [90]. However, the method
relies upon primarily non-certified commercial reference standards for each analyte of
interest, without which, and alongside the inability to detect protein-bound toxins and
toxin metabolites, total MC concentrations can be underestimated. Such underestimation
can be avoided through use of the MMPB method for quantitation of Adda-containing
MCs, but analogue identification is lost [73]. Additionally, there is the potential, along with
the Adda ELISA, for missing non Adda-containing analogues, unless refined to incorpo-
rate modified Adda moieties [37]. MMPB and ELISA methods typically compare well for
confirming MC concentrations in water samples, with chromatographic methods carrying
a risk of under-estimation [63]. However, further work is required to assess comparative
performance in biological tissues, especially bivalve molluscs such as mussels.

In this study, two ELISA methods were used for quantitative assessment of MC/NOD
concentrations in the mussel tissues. Different quantitative results returned by the two as-
says potentially relate to either differing assay functionality and/or differences in congener
cross-reactivities [99]. Both ELISAs have acceptable method performance characteristics as
determined through single-laboratory validation exercises, including mean recoveries of
close to 100% and precision ≤15% [44,100], although notably both assessments focused on
MC-LR only and were not conducted on mussel tissue matrix.

The multihapten ELISA [44] compared fairly well with the total MCs results deter-
mined by LC-MS/MS in the RMs, but under-estimated LC-MS/MS concentrations when
including NODs into the total LC-MS/MS assessment (Table 2). These differences may
be due to the assay being based on polyclonal antibodies raised against a mixture of
different MC analogues, specifically MC-LA, MC-LF, MC-LW, MC-YR and MC-WR [44].
Consequently, the assay is specific to a range of MCs, with molar cross-reactivities of
MC-LR (100%), MC-LY (46%), MC-LF (100%), MC-LW (93%), [Dha7]MC-LR (92%) [44]. On
the other hand, the cross-reactivity for NOD-R was 58% to 72% in comparison with MC-LR,
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depending on the source of NOD-R [44]. This cross-reactivity can explain the fairly good
correlation compared with the total MCs results determined by LC-MS/MS in the RMs and
the slight under-estimation in total MCs + NODs in comparison to LC-MS/MS, especially
considering the high level of NOD-R in the RM.

Conversely, the data returned using the Adda ELISA was higher on average than the
total MCs + NODs combined. This assay, utilized for official method USEPA 546 [100],
is an indirect competitive ELISA based on detection of the Adda epitope. QC checks for
the validated method included thresholds for calibration correlation coefficients, repli-
cate precision and spike recoveries, with all controls passing, although the sample matrix
assessed was water, as opposed to tissues assessed in this study. The broad specificity
of this assay may explain in part why it returned higher concentrations than the multi-
hapten ELISA (Table 2). Notably, the Adda ELISA has been reported to show a mean
200% cross-reactivity for NOD-R, which is likely to contribute to the higher results from
this assay [101]. Higher concentrations determined in comparison with LC-MS/MS may
also infer that the Adda ELISA is incorporating additional minor analogues, potential
degradation products or additional conjugated metabolites, which are not targeted by the
chemical detection approach. It is also noted that untargeted LC-HRMS evidenced the pres-
ence of additional analogues which increased LC-MS/MS results by approximately 7.5%,
with no conjugates, other Adda-containing degradation products or MCs with modified
Adda moieties detected. As such, the comparison between Adda ELISA and LC-MS/MS at
least agrees with reports that targeted chromatographic quantitation methods should return
lower total MC concentrations in comparison to the more broadly specific biochemical
methods [97,101,102].

Concentrations determined by MMPB analysis of soluble MCs + NODs in solvent
extracts were found to compare closely with the total MCs + NODs results returned by
LC-MS/MS, although there was less of an agreement between the MMPB and ELISA results,
potentially providing further evidence for a lower cross-reactivity of the multihapten ELISA
to NODs in comparison to MCs, assuming an equivalent response to all Adda-containing
MC analogues (Table 3).

Overall, however, the assessment provided an excellent multi-method assessment of
freely-extractable cyanotoxins in the RM, giving greater confidence in the results obtained,
highlighting some differences in ELISA performance, the benefits of using MMPB for
quantifying soluble MCs + NODs, whilst profiles and total MCs + NODs values were
confirmed using LC-MS/MS.

3.3. Bound Toxins

Of all the methods employed, the MMPB LC-MS/MS analysis of oxidized tissue
samples is uniquely able to measure bound MCs, even if they are not extractable by the
sample preparation approach used for all other methods. Chromatographic quantitation
methods such as LC-MS/MS will consequently determine lower toxin concentrations in
comparison to the MMPB LC-MS/MS method after oxidative cleavage of Adda-containing
MC/NOD congeners, given the ability of the latter to detect both protein bound and
conjugated toxins [97,101,102]. The comparison of MMPB concentrations quantified in both
solvent extracts and mussel tissue in this study demonstrated that a significant proportion
of toxins present in shellfish were indeed bound to protein phosphatases and/or other
biomolecules not soluble in the extraction solvent. Whilst these bound MCs may not be
fully bioaccessible and therefore bioavailable following oral ingestion and digestion [20,60],
the MC-protein phosphatase binding and/or the potential for cleavage of the covalent
bonding may still result in the release of toxins from the contaminated seafood [23,68] given
the reversible nature of thiol conjugation, although more information is required regarding
deconjugation at low pH [53]. Whilst the MMPB method may need further refinement and
standardization for tissue samples [23,37,63], the method has been utilized for certifying
a water RM for microcystins in the past [74]. The method has usefully demonstrated
the presence of bound toxins, which may add to the overall toxicity of contaminated
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shellfish following oral ingestion by humans, potentially increasing further following food
processing [103–105].

Little data is available describing the range of proportions of protein-bound/conjugated
cyanotoxins (masked toxins) in shellfish tissues, with the major focus to date being on
bioaccumulation in finfish. In this study, the proportion of bound toxins ranged from
25% to 54% of the total toxin load (mean = 43 ± 9%) evidencing the significant levels of
additional toxins within shellfish matrix in addition to the soluble toxins. It is noted that
these bound/conjugated toxins have reached levels around 40% of the total in a relatively
short period of time, given the tissues were contaminated through short-term exposure of
mussels to toxic cyanobacteria in the laboratory, with these samples collected after just five
days feeding [26]. Similarly, radiolabeling work using 14C-labelled MC-LR injections in
salmon, demonstrated up to 60% of toxins to form unextractable covalent forms within five
hours of administration, showing the rapid kinetics of the irreversible binding of toxins
with protein phosphatases [56]. Within the literature, covalently bound MCs can account
for up to 99% of the total MCs present in tissue samples, with application of the MMPB
method evidencing the proportion of masked toxins to reach 85% in wild fish population
tissues [22]. Other work has demonstrated ~75% of toxin burden to be associated with
covalently bonded MCs in salmon livers and even 99.99% bound toxins in crab embryo
tissues [55]. These higher proportions in comparison to the mussel RMs may relate either
to the mechanisms of toxin accumulation in fish tissues and/or the length of time fish were
exposed to toxigenic cyanobacteria in the environment during the causative bloom. It is
also noted that non-Adda moiety containing MCs such as [DMAdda5] and [ADMAdda5]
congeners will not oxidatively cleave to form the MMPB ions. No such analogues were
detected in our mussel tissues through untargeted LC-HRMS screening, however. If such
analogues were present, they could be detected via monitoring of either [DMAdda5]
and [ADMAdda5] related cleavage products, specifically 2-methyl-3-oxo-4R-methyl-5S-
methoxy-6-phenylhexanoic acid (MOMAPH) and 2R-methyl-3S-hydroxy-4-phenylbutanoic
acid (MHPB), or alternatively through use of a PP2A which has the same cross reactivity
between Adda and non-Adda toxins [37].

3.4. Potential as Mussel Reference Material

The mussel RM prepared was found to be homogenous across the entire preparation
batch. Four independent methodologies subsequently facilitated the assignment of a
consensus mean concentration for total MCs + NODs in the RM. In terms of stability,
all MC and NOD analytes were found to be stable when tissues were stored frozen for
up to 181 days. Conversely, under refrigerated conditions, there were significant losses
of all MC analogues present in the mussel tissue over the 181-day storage period, with
evidence for degradation of some analogues clear after just one month. The apparent lower
stability of MC-LR and [D-Asp3]MC-LR/[Dha7]MC-LR indicates that the analogues with
arginine (R) at position 4 in the molecule are potentially more prone to degradation than
the other analogues assessed in this material, given all MC analogues in our material were
leucine (L) substituted at position 2, with others including position 4-substituted tyrosine
(MC-LY), phenylalanine (MC-LF) and tryptophan (MC-LW) substituents. Conversely,
other reports have evidenced lower stability in water samples for analogues incorporating
tryptophan such as MC-LW and MC-WR (Dinh et al., 2020). Unfortunately, the microcystin
profile generated in the tissue did not contain any analogues with arginine at position 4,
thereby preventing the assessment of other commonly occurring analogue types such as
MC-RR, MC-YR and [D-Asp3]MC-RR. Given that tissues were not sterilized, microbe-
mediated degradation was expected, along with enzyme-related changes. Interestingly,
NOD-R concentrations remained stable in refrigerated tissues for the whole study period,
potentially relating to the absence of a reactive Mdha7 group in NOD (Figure 1), which
could suggest that abiotic changes are dominant in the fridge-stored tissues for the MC
analogues. Further work would be required to confirm this using sterilized tissue samples.
With evidence for acceptable stability of all MCs and NOD-R in tissues stored in the freezer
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for six months, the results demonstrated that these RMs should be stored frozen for the
long term, in order to prevent degradation of toxins (e.g., [106]). Whilst future work could
assess stability beyond six months, this study does demonstrate a proof of concept for
cyanotoxin stability in shellfish tissue materials when samples are stored correctly, without
any apparent need for additional stabilization techniques as per (e.g., [77–79,86,87].

Previous work has highlighted the urgent need for standardizing cyanotoxin extraction
methods and related testing methods [69,107] and to report quantitative results alongside
matrix QC samples associated with certified or at least well characterised toxin concentra-
tions in order to compare results generated between different methods [23]. The availability
of a shellfish reference material for cyanotoxins addresses in part the need for generating
data on the occurrence of cyanobacterial toxins in seafood matrices, other than fish [23]. As
such, it is critical that well characterised materials ultimately become available to testing
laboratories, in order to help facilitate more accurate and reproducible cyanotoxin testing
in biological tissues. Additionally, certified or even well-characterised matrix materials will
aid the validation of testing methods, particularly those incorporating the detection and
quantitation of protein-bound toxins, noting that recovery spiking experiments will only
help determine the extraction efficiency for unbound toxins [34]. Consequently it will be
important to characterize and ultimately certify both the soluble and bound toxin fractions
within any such tissue.

Following on from this proof-of-concept investigation, in order to fully develop the
capabilities for production of a fully certified cyanotoxin reference material, further work
is recommended. Enhanced stability assessments incorporating (a) longer assessment
times (b) position 4 arginine substituted analogues (c) comparative use of stabilization
techniques [76] such as autoclaving [89], freeze-drying [78,86]), use of antioxidant and an-
tibiotic additives [77,89], high-pressure processing [88] and gamma irradiation [79,87]. The
development of additional certified calibration solutions along with isotopically labelled
toxins facilitating isotope-dilution mass spectrometric determination could also be used to
further improve method accuracy, precision and traceability of soluble toxin measurement.
A suitable negative control tissue would also be recommended to run alongside the cyan-
otoxin RM, with recent non-targeted analysis on the NRC FDMT1 material revealing the
absence of MCs, making this a potentially useful control RM [108]. Further methodological
advancements incorporating de-conjugation approaches following [53] alongside current
MMPB methods would also be useful to develop reliable approaches for measuring bound
toxin concentrations. There would also be advantages to incorporate a larger number of
cyanotoxins, including not only additional microcystin analogues, but also other toxin
families such as cylindrospermopsin, anatoxins and saxitoxins, ultimately providing a
unique yet important seafood matrix reference material for future validation and quality
control procedures. Given the significant presence of bound toxins in the mussel tissues
assessed in this study, there is also an important requirement to determine whether the
bioavailability of this fraction is likely to cause equivalent toxicity to humans following
consumption of contaminated products.

4. Materials and Methods
4.1. Chemicals and Standards

For shellfish feeding, Shellfish diet 1800 (approximately 7.4 × 1011 cells/mL) was
purchased from ReedMariculture Inc. (Campbell, CA, USA), and dilutions were made in
water/seawater (10:0.86, v/v). For LC-MS/MS analysis and toxin quantitation, analyti-
cal grade chemicals and HPLC-grade solvents were used throughout the study. Mobile
phases were prepared from LC-MS-grade acetonitrile (Fisher Optima, ThermoFisher, Hemel,
Hempstead, UK) and water used for LC-MS was obtained in-house. Toxin standards used
for preparation of calibration solutions (MC-RR, MC-LA, MC-LY, MC-LF, MC-LW, MC-
YR, MC-WR, MC-HilR, MC-HtyR, MC-LR, [D-Asp3]MC-LR and NOD-R) were obtained
from Enzo Life Sciences, Exeter, UK (≥95% purity). A certified standard of [Dha7]MC-LR
(~99.6% purity) was obtained from Biotoxin Metrology, National Research Council Canada
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(NRCC; Halifax, NS, Canada), but this was not incorporated into the final mixed calibrant
solutions given the lack of chromatographic separation from [D-Asp3]MC-LR. A NRCC
CRM for MC-LR (~97.5% purity) was also used for calibration of ELISA and MMPB meth-
ods. Reference standards received as solid films were dissolved in water:methanol (1:1 v/v),
to form stock solutions. A mixed stock solution was subsequently prepared by combining
aliquots of each stock, followed by further dilutions in solvent to create seven-level suite of
working calibration standards between 0.33 ng/mL to 327 ng/mL per toxin.

4.2. Culturing of Cyanobacteria and Shellfish Feeding

Cyanobacterial culturing and shellfish feeding was conducted as detailed in [24]. In
brief, two cyanobacterial cultures were grown in modified BG-11 medium with 75 g/L
sodium nitrate: Nodularia spumigena KAC 66 (Kalmar Algae Collection, Kalmar, Sweden)
and Microcystis aeruginosa PCC 7813 (Pasteur Culture Collection of Cyanobacteria, Paris,
France). N. spumigena media was supplemented with 20% (w/v) Instant Ocean artificial
seawater (Aquarium Systems Inc., Sarrebourg, France). Cultures were maintained at
20–23 ◦C, under continuous illumination (10–15 µmol/m2/s) and sparged with sterile
air at 2.3 L/min until four days before harvesting. Cells were collected and maintained
in 25 L carboys at 17 ± 1 ◦C with mild aeration and a light cycle of 17 h illumination
(24 µmol/m2/s) and 7 h darkness for four weeks prior to shellfish feeding. Live mussels
Mytilus edulis (sex undetermined) were obtained from the Shetland Islands (N Scotland,
UK), acclimatized to laboratory tank conditions for a week and cleaned of barnacles and
other debris prior to the experiment. Two seawater tanks (each 300 L, 122 cm long, 102 cm
wide, 77 cm high and containing approximately 150 L seawater) equipped with ultraviolet
sterilizers (class 1 IP64, twin UV 24 W, 240 V, 50 Hz, Tropical Marine Centre, Rickmansworth,
Greater London, UK) were maintained at 16 ± 1 ◦C. One of the tanks was used for the
exposure of 420 M. edulis to M. aeruginosa (3.9 × 106 cells/L final concentration) and
N. spumigena (3.1 × 106 cells/L final concentration) for a total period of three days of daily
feeding. Mussels were separated into three separate sub-compartments (A, D and E). Live
cyanobacterial cells were homogenised and fed to live mussels. The second control tank
contained 420 mussels separated into three sub-compartments B, C and F and fed shellfish
diet only (Figure 6). After checking toxin concentrations within the tissues of a sub-sample,
the exposure was terminated and the mussels removed for processing.
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Figure 6. Schematic illustration of exposure and control tanks showing three sub-compartments for
each exposure regime, based on [26]. A, D and E contained mussels exposed to cyanobacteria, whilst
B, C and F were control tanks with no toxin containing cyanobacteria exposure.

4.3. Reference Material Preparation

Just over 2.0 kg of toxin-containing mussel tissue from the exposed tank sub-compartments
A, D and E was available for processing after the exposure study had completed and a
previous study on MC/NOD uptake in mussels was completed [26]. Mussels were shucked
to remove shells and whole tissues incorporating all the visceral mass and edible muscle
combined were homogenised thoroughly in batches using high speed Waring industrial
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blenders. Each batch of homogenised tissue was combined into a large polypropylene con-
tainer, with approximately 450 mL deionized water added to further aid homogenization,
resulting in an overall water content of ~80%. Re-homogenization was conducted using
a high-speed hand blender and an aliquot of tissue was taken for analysis to confirm the
presence of a suitable number of cyanotoxin analytes at appropriate concentration levels.
After testing, a final homogenization step was conducted and a magnetic stirrer added to
the vessel, enabling continuous stirring during reference material (RM) aliquoting. Prior
to dispensing the samples, 7.0 mL polypropylene Bijou vials were labelled with unique
LRM identification numbers. Aliquots (4.5 g) were weighed into the tubes, to provide
enough material for two 2.0 g sub-samples to be taken from each vial. As soon as each
vial was dispensed, a second operator capped the tube. A total of 520 vials of RM were
dispensed and capped, before placing all upright in a −20 ◦C freezer in order to freeze
the contents in the bottom of the vials. After 24 h, the vials were transferred to long-term
storage at −80 ◦C.

4.4. Targeted Toxin Analysis

Vials of mussels were opened carefully and 2.00 ± 0.01 g sub-samples were weighed
accurately into 50 mL polypropylene centrifuge tubes. Extraction and analysis by LC-
MS/MS was conducted using the validated and ISO17025:2005 accredited method of [90].
Briefly, each homogenised tissue was extracted with a single dispersive extraction using
8.0 mL of methanol:water (80:20, v/v) and a 2 min vortex mixing time prior to centrifu-
gation (4500 g; 10 min) and filtration of the resulting supernatant (0.2 µm syringe filter).
Targeted LC-MS/MS analysis of cyanotoxins was conducted as detailed in [90]. A Waters
(Manchester, UK) Acquity UHPLC system coupled to a Waters (Manchester, UK) Xevo TQ
triple quadrupole mass spectrometer (MS/MS) was used with a 1.7 µm, 2.1 × 50 mm Waters
Acquity UPLC BEH C18 column in conjunction with a Waters BEH C18 guard cartridge.
The column was held at +60 ◦C, and a 5 µL injection volume utilized, together with mobile
phase flow rate of 0.6 mL/min. Mobile phase A1 consisted of water containing 0.025% (v/v)
of formic acid, mobile phase B1 comprised acetonitrile (MeCN) with 0.025% (v/v) formic
acid. The UHPLC gradient started at 98% A1, dropping to 75% A1 at 0.5 min holding until
1.5 min, dropping further to 60% A1 at 3.0 min, decreasing further to 50% A1 at 4 min,
before a sharp drop to 5% A1 at 4.1 min, holding until 4.5 min before increasing back to
98% A1 for column equilibration at 5 min for a further 0.5 min. The MS/MS source param-
eters were exactly as specified in [90], with 150 ◦C source temperature, 600 ◦C desolvation
temperature, 600 L/h desolvation gas flow, 0.15 mL/min collision gas flow and capillary
voltage at 1.0 kV. Quantitation of MCs was performed against external calibration stan-
dards with results calculated in terms of µg/kg wet weight of shellfish tissue. Throughout
each LC-MS/MS sequence used for characterization, homogeneity and stability testing,
quality control (QC) measures were applied following ISO17025-accredited protocols. This
included the assessment of instrument blanks, method sensitivity, calibration linearity,
positive control response, method procedural blanks and method precision. All QC checks
passed stipulated thresholds. For minor toxin analogue analysis, the same chromatographic
conditions as above were used. However, LC effluent was directed into the ESI source of
a Waters Xevo TQ-S triple quadrupole mass spectrometer operating in SRM scan mode
using positive ionization. SRM transitions are shown in the chromatograms of Figure 2 and
were obtained using a collision energy of 70 eV as per [90]. Appendix A tabulates all SRM
transitions. Full method performance characteristics for the method are detailed in [90].
Limits of Reporting (LOR) range from 0.3 to 1.5 µg/kg wet weight per toxin in mussel
tissue, with the majority of calibration regressions >0.99 over a linear range reaching the
equivalent of 2.5 mg/kg wet weight. No significant matrix effects were evident, so all
calibrations were subsequently prepared in solvent rather than mussel extract matrix.
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4.5. Toxin Profile and Homogeneity Testing

Fourteen RM samples were chosen for homogeneity testing. These were selected
immediately after aliquoting and initial freezing, to provide a representative cross section
of samples aliquoted over the entire production batch. In addition to the first (vial 1) and
last (vial 520) aliquots dispensed, remaining test samples were randomly chosen across
the production batch. Prior to homogeneity testing, samples were allowed to slowly thaw
to room temperature, before the contents of each sample were mixed and two separate
2.00 ± 0.01 aliquots weighed out from each vial into 50 mL polypropylene centrifuge tubes,
giving a total of 28 samples for extraction. All samples were extracted in MeOH:water
(80:20 v/v) and filtered prior to LC-MS/MS analysis.

4.6. Stability Testing

Material stability was assessed over 181 days using a reverse-isochronous experimental
design. Triplicate RM vials were subjected to storage under both frozen (−20 ◦C) and
refrigerated (+4 ◦C) conditions, incorporating eight time points (specifically 0, 28, 53, 86, 108,
126, 150 and 181 days). The triplicate samples were stored at −80 ◦C for variable periods of
time before being placing in storage at the two elevated temperature conditions until the
end of the study. At the end time point, all samples were removed from storage, allowed
to equilibrate to room temperature before being extracted, filtered and analysed by LC-
MS/MS. During analysis, triplicates were spread across the entire instrumental sequence,
to account for any instrumental drift if present. Quantitative results determined at t = 0
were used to calculate mean concentrations, with three-times the standard deviation of the
mean used to assigned acceptability limits for toxin concentrations at later time points.

4.7. Untargeted Toxin Analysis

Sample extraction was carried out as in Section 4.4. LC-HRMS analyses were per-
formed on an Agilent 1200 LC system (Agilent, Santa Clara, CA, USA) coupled to a Q
Exactive HF Orbitrap mass spectrometer with a HESI-II heated electrospray ionization in-
terface (ThermoFisher Scientific, Waltham, MA, USA). Liquid chromatography parameters
included a 5 µL injection on a SymmetryShield 3.5 µm C18 column (100 × 2.1 mm; Waters,
Milford, MA, USA) held at 40 ◦C with mobile phases A and B of H2O and CH3CN, respec-
tively, both of which contained 0.1% v/v formic acid. The elution gradient (0.3 mL/min)
included a linear increase from 20–100% B over 21 min, a hold at 100% B (6 min), a decrease
to 20% B over 0.1 min and equilibration at 20% B for 2.9 min.

LC-HRMS source conditions included a capillary temperature of 350 ◦C, sheath and
auxiliary gas flow rates of 25 and 8 units, respectively a spray voltage of +3.7 kV and an S-
Lens RF level of 100. Comprehensive HRMS/MS data were first acquired using a combined
full scan (FS) and data independent acquisitions (DIA) scan mode. All HRMS/MS data
were processed manually in Thermo Xcalibu 4.1 software.

Full scan data were collected from m/z 500–1200 using the 30,000 resolution setting,
an AGC target of 1 × 106 and a max IT of 120 ms and MS/MS data was collected using
the 15,000 resolution setting, an AGC target of 2 × 105 and a stepped collision energy of
30, 60 and 80 V. For DIA, the max C-trap ion trapping time (max IT) was set to ‘auto’ and
62 m/z wide precursor isolation windows centered at m/z 530, 590, 650, 710, 770, 830, 890,
950, 1010, 1070, 1130, 1190, 1250, 1310, and 1370 were used.

Targeted MS/MS spectra of suspected MCs were then acquired using the Parallel
Reaction Monitoring scan mode with a using a resolution setting of 15,000, AGC target of
5 × 105 and, a Maximum IT fill time of 3 sec and an isolation window of 0.5 m/z. Stepped
CE for MCs containing one arginine residue were 60, 65 and 70 V and those for MCs
containing no arginine residues were 25, 35 and 40 V.
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4.8. ELISA
4.8.1. Multihapten ELISA

Mussel tissues were extracted by adding either 8.0 mL or 10.0 mL MeOH:water
(80:20 v/v) to 2.0 g tissue homogenate, vortex mixing and then centrifuging for 10 min
(2250 g; 4 ◦C). The concentration of MCs in each shellfish extract supernatant was deter-
mined by indirect competitive ELISA (NVI, Oslo, Norway) as described by Samdal et al. [42].
The assay was optimized, as reported previously, with only minor adjustments to 0.5 µg/mL
of the plate-coating antigen, 1:7000 of the antiserum 80289-5b, and 1:12,000 of the donkey
antisheep IgG (H + L)−horseradish peroxidase conjugate (antisheep−HRP from Agrisera
antibodies (Vännäs, Sweden)). These concentrations were determined by checkerboard
titrations followed by optimization of the standard curve. The MC-LR standard (NRC
CRM-MC-LR) in methanol (500 ng/mL) was diluted in Phosphate Buffered Saline with
Tween (PBST) to give a methanol concentration of 10%, and then in a threefold dilution
series in sample buffer resulting in standard concentrations of 50, 16.7, 5.56, 0.62, 0.20, 0.069,
0.023, 0.0076, and 0.0025 ng/mL. Serial dilutions of standards and samples were analyzed
in duplicate on the plate. All incubations were performed at ~20 ◦C. Absorbances were mea-
sured at 450 nm using a SpectraMax i3x plate reader (Molecular Devices, Sunnyvale, CA,
USA). Assay standard curves were calculated using 4-parameter logistic treatment of the
data using SoftMax Pro version 6.5.1. (Molecular Devices, Sunnyvale, CA, USA). The assay
working range was defined as the linear region at 20–80% of maximum absorbance (Amax).
The CYNTX RMs were quantitated at 400 and 800 times dilution to remove potential matrix
effects, as evidenced by negative control shellfish samples.

4.8.2. Adda ELISA

Tissues were transferred to glass vials as 100 mg subsets (in duplicate) and extracted
using 4 mL MeOH:water (75:25 v/v) in 100 mM acetic acid via bath sonication (20 min).
Samples were cooled (4 ◦C) followed by centrifugation (1500 g; 15 min). Supernatants were
retained and pellets vortex rinsed with extractant followed by centrifugation. The super-
natants were pooled, mixed, and used for both the Adda ELISA and subsequent MMPB
oxidation. One of each duplicate ‘Soluble MCs + NODs’ extract (50 µL corresponding
to 1 mg tissue) were evaporated to dryness (60 ◦C, N2) and reconstituted in 1 mL phos-
phate buffer (10 mM; pH 7) for analysis. Further dilutions were conducted as necessary to
achieve data within range of the calibration curve (0.15–5.0 ng/mL of NRC-CRM-MC-LR).
A MCs + NODs Adda ELISA (Eurofins-Abraxis, Warminster, Pennsylvania, USA) [109]
was utilized with the protocol refined and QC requirements as previously described [101].
This included the preparation of a standard curve from dilutions of a certified MC-LR
standard over a range between 0.15 ng/mL and 4.00 ng/mL, also incorporating fortified
samples at 1.0 ng/mL. The assay is sensitive down to a quantification limit of 150 µg/kg wet
weight for MCs + NODs as determined from dilution factors (1000-fold) and kit sensitivity
(0.15 ng/mL).

4.9. MMPB for Total MCs
4.9.1. Sample Preparation

Samples for the MMPB method were further homogenized by transferring 0.5 g of
material to 7 mL vials containing ceramic beads (2.8 mm). Each subsample received
10 mM phosphate buffer (pH = 7) to achieve sample concentrations of 100 mg/mL. An
Omni Bead Ruptor was utilized to homogenize samples (6 m/s; 15 s; 2×; dwell 30 s).
Aliquots (0.1 g corresponding to 10 mg) were dispensed via Pasteur pipette into glass
vials for oxidations in duplicate. In addition to whole tissues, tissue extracts (Section 4.8.2)
were oxidized as 500 µL aliquots (corresponding to 10 mg tissue in acidified MeOH) for
freely extractable soluble MCs + NODs. All subsets were spiked with internal standard
(d3-MMPB). Tissue was oxidized with 2.5 mL of oxidant while extracts were oxidized
with 1 mL oxidant, which was composed of 0.2 M K2CO3, 0.1 M KMnO4 and 0.1 M
NaIO4. Oxidation was stopped by the addition of sodium bisulfite (40% wt%). Aliquots
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were cleaned using solid phase extraction (SPE). Preconditioned Strata X Polymeric SPE
cartridges (200 mg for tissues, 100 mg for extracts) were loaded with sample, rinsed 3x with
deionized water, and eluted with acetonitrile:water (90:10 v/v). Elutions were evaporated
to dryness (60 ◦C, N2), reconstituted in MeOH:water (5:95 v/v) (sample concentration of
10 mg/mL), filtered (0.2 µm), and analyzed. QC measures incorporated into the testing
batch included application of spiked recovery checks and internal standard returns, together
with method procedural blanks. All controls fell within method-specified control limits.

4.9.2. LC-MS/MS Analysis for MMPB (Adda MCs + NODs)

The [M-H]− ion of MMPB (m/z 207) was fragmented and the product ion m/z 131
was monitored. The internal standard d3-MMPB (m/z 210 > 131) was used in conjunction
with MMPB response for calibration. A matrix matched calibration curve (using a non-
exposed toxin-free mussel control sample) was generated for quantification of total Adda
MCs + NODs (0–25,000 ng/g of oxidized MC-LR) and a calibration curve generated in
water was used for quantification of soluble MCs + NODs (0–500 ng/mL of oxidized
MC-LR). A certified reference standard of MC-LR (NRC CRM -MC-LR) was used for
all calibrations.

4.10. Data Analysis

Statistics used for the assessment of method equivalence were performed using RStu-
dio (version 1.3. 1056). For the repeated means ANOVA (‘rstatix’package) and Tukey’s
pairwise post hoc (‘eemeans’ package) analysis data was log transformed. The NIST De-
cision Tree was used to provide a recommendation on how to combine the independent
measurement results obtained from the ELISAs, MMPB and LC-MS/MS analyses [91,92],
with a Hierarchical Laplace-Gauss Fit Model applied for determining the consensus esti-
mate and associated standard uncertainty.
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Appendix A

Table A1. Summary of MS/MS conditions used for cyanotoxin determination.

Analyte SRM Transitions a Cone Voltage (V) Collision Energy (eV)

MC-RR 519.9 † > 134.9; 126.9; 102.8 30 30; 50; 70
NOD-R 825.5 > 135.1; 103.1 55 60; 100
MC-LA 910.1 > 135.1; 106.9 35 70; 80

[Dha7]MC-LR 981.5 > 135.0; 106.8 75 75; 80
[D-Asp3]MC-LR 981.5 > 134.9; 106.9 75 70; 80

MC-LF 986.5 > 213.0; 135.0 35 60; 65
MC-LR 995.6 > 135.0; 127.0 60 70; 90
MC-LY 1002.5 > 135.0; 106.9 40 70; 90

MC-HilR 1009.7 > 134.9; 126.9; 106.9 75 75; 90; 80
MC-LW 1025.5 > 134.9; 126.8 35 65; 90
MC-YR 1045.6 > 135.0; 126.9 75 75; 90

MC-HtyR 1059.6 > 134.9; 106.9 75 70; 90
MC-WR 1068.6 > 134.9; 106.9 80 75; 100

[seco-2/3]NOD 692.0 ‡ > 135.0; 107.0 55 54; 58
dmNOD-R 811.4 > 134.9 60 70

MC-LM 970.5 > 134.9 60 70
[D-Asp3]MC-LF 972.5 > 134.9 60 70
[D-Asp3]MC-LW 1011.5 > 134.9 60 70

MC-LY 1018.5 > 134.9 60 70
MC-LW 1041.5 > 134.9 60 70

a precursor m/z > product m/z 1; product m/z 2; † Doubly charged precursor ion [M + 2H]2+; ‡ [M-NH2-135]+ as
precursor ion [110].
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Figure A1. Cyanotoxin concentrations plotted in homogeneity control charts, showing scatter of 
individual test value duplicates (n = 20) (a) NOD-R (b) MC-LR (c) MC-LY (d) MC-LF (e) MC-LW (f) 
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Figure A1. Cyanotoxin concentrations plotted in homogeneity control charts, showing scatter of
individual test value duplicates (n = 20) (a) NOD-R (b) MC-LR (c) MC-LY (d) MC-LF (e) MC-LW
(f) dmMC-LR ([D-Asp3]MC-LR/[Dha7]MC-LR).
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Appendix C

Table A2. Summary of MCs + NODs concentrations and total toxin concentrations (µg/kg wet
weight) in individual crude extracts of LRM and raw material mussel samples following analysis
by four techniques: LC-MS/MS, multihapten ELISA, Adda ELISA and MMPB for soluble and
total toxins.

RM Aliquots Raw Exposed
Mussel Tissues

Raw Unexposed
Mussel Tissues

RM1 RM2 RM3 A D E B C F

NOD-R 935 897 982 905 2764 2597 nd nd nd
[seco-2/3]-NOD 181 190 205 179 510 425 nd nd nd

MC-LR 530 492 465 420 1356 1265 nd nd nd
MC-LY 103 95 98 89 274 246 nd nd nd
MC-LF 231 260 223 191 600 542 nd nd nd
MC-LW 201 197 179 188 501 490 nd nd nd

MC-HilR 19 15 11 12 38 51 nd nd nd
dmMC-LR 62 51 55 49 134 111 nd nd nd

Sum of all MCs by LC-MS/MS 1146 1110 1031 949 2903 2705 nd nd nd
Sum of all NODs by LC-MS/MS 1116 1087 1187 1084 3274 3022 nd nd nd

Sum of all MCs + NODs combined
by LC-MS/MS 2262 2197 2218 2033 6177 5727 nd nd nd

Multihapten ELISA 1458 1552 1262 294 2434 3782 nd nd nd
Adda ELISA 3788 3575 3350 893 3508 4258 nd nd nd

MMPB—soluble MCs + NODs 2156 2319 2766 1589 5994 5622 nd nd nd
MMPB—total MCs + NODs 3745 3969 3769 3422 11566 10921 nd nd nd

not detected (nd).
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Figure A2. LC-HRMS chromatograms showing nodularin and microcystin profile identified in
mussel tissue RM.
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Figure A3. SRM chromatograms of minor cyanotoxin analogues obtained following LC-MS/MS anal-
ysis of mussel RM extracts highlighting detection of: (a) MC-LW + O (1041.5 > 134.9) (b) MC-LY + O
(1018.5 > 134.9) (c) MC-LR + H2O (1013.6 > 134.9) (d) [D-Asp3]MC-LW (1011.5 > 134.9] (e) [D-
Asp3]MC-LF (972.5 > 134.9) (f) MC-LM (970.5 > 134.9) (g) [seco-2/3]dmNOD (829.4 > 134.9]
(h) dmNOD-R (811.4 > 134.9).
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Appendix G

A repeated measures ANOVA demonstrated that the lab method choice had a statis-
tical effect on results (F = 12.699; p = 0.005). Table A3 summarises the linear regression
characteristics between each pair of method results, showing similarities between some
data sets (e.g., LC-MS/MS of MCs + NODs vs. MMPB soluble) but notable differences
with others (e.g., Adda ELISA and MMPB Total). These relationships were assessed further
using a Tukey post hoc analysis of pairwise differences (Table A4). Method differences
assessed incorporated MCs + NODs by LC-MS/MS, both ELISA methods, MMPB soluble
and MMPB total. Results highlighted statistical differences between the data quantified
using multihapten ELISA and all other methods, as well as MMPB total with all other
methods. No statistical differences were confirmed between LC-MS/MS and both the
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Adda ELISA and MMPB soluble concentrations, as well as between the Adda ELISA and
MMPB soluble.
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The multihapten ELISA correlated fairly well with the total MCs values determined by
LC-MS/MS with higher overall results by ELISA, with a regression slope of 0.648 (r2 = 0.851)
(Table A3). When incorporating NODs concentrations into the total LC-MS/MS results, the
ELISA returned lower results in comparison to MCs + NODs combined but was still fairly
well correlated (slope = 1.381, r2 = 0.839; Table A3). Conversely, the data returned using the
Adda ELISA was higher on average than the total MCs + NODs combined (regression be-
tween ELISA and LC-MS/MS MCs + NODs: slope = 0.734; Tukey post hoc p = 0.9992), but
with more variability in ratios between the two data sets resulting in a poorer correlation
(r2 = 0.445).

Data generated following the MMPB analysis of soluble MCs + NODs quantified
from solvent extracts compared closely with the total MCs + NODs results returned by LC-
MS/MS with an excellent correlation described by the regression slope of 1.014 (r2 = 0.985)
and no statistical difference following Tukey posthoc analysis (p = 1.0000). Correlations
were lower between MMPB of extracts and both ELISAs, (Table A3), although there was
no statistical difference between the MMPB soluble and Adda ELISA data (Tukey posthoc
p = 0.9998; Table A4).
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Table A3. Correlations between quantitative results returned for cyanotoxin-contaminated mus-
sels (n = 6) using each method showing slope of linear regression with correlation coefficient (r2)
in brackets.

Methods LC-MS/MCs LC-MS/NODs LC-MS/MCs +
NODs

Multihapten
ELISA Adda ELISA MMPB

Soluble MMPB Total

LC-MS/MS MCs 1.000 (1.000) 0.858 (0.997) 0.463 (0.999) 0.648 (0.851) 0.359 (0.471) 0.469 (0.984) 0.232 (0.999)

LC-MS/MS NODs - 1.000 (1.000) 0.537 (0.999) 0.732 (0.828) 0.375 (0.423) 0.545 (0.985) 0.270 (0.998)

LC-MS/MS MCs + NODs - - 1.000 (1.000) 1.381 (0.839) 0.734 (0.445) 1.014 (0.985) 0.502 (0.999)

Multihapten ELISA - - - 1.000 (1.000) 0.766 (0.765) 0.543 (0.868) 0.259 (0.849)

Adda ELISA - - - - 1.000 (1.000) 0.337 (0.540) 0.137 (0.451)

MMPB Soluble - - - - - 1.000 (1.000) 0.481 (0.986)

MMPB Total - - - - - - 1.000 (1.000)

Table A4. p-values from Tukey post hoc analysis of pairwise differences.

Methods LC-MS/MCs +
NODs

Multihapten
ELISA Adda ELISA MMPB Soluble MMPB Total

LC-MS/MS MCs + NODs - 0.0047 0.9992 1.0000 0.0480
Multihapten ELISA - - 0.0080 0.0054 <0.0001

Adda ELISA - - - 0.9998 0.0292
MMPB Soluble - - - - 0.0424

MMPB Total - - - - -
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