Running head: Age structure affects productivity

Age structure affects population productivity in an exploited fish species

Jan Ohlberger ${ }^{1, *}$, Øystein Langangen ${ }^{2}$, Leif Chr. Stige ${ }^{2,3}$
${ }^{1}$ School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA
${ }^{2}$ Department of Biosciences, University of Oslo, Oslo, Norway
${ }^{3}$ Norwegian Veterinary Institute, Ås, Norway

* Correspondence: Jan Ohlberger, School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat St, Seattle, WA 98195-5020, USA, Phone: +1-206-543-7280, Email: janohl@uw.edu, ORCID iD: orcid.org/0000-0001-6795-240X

Open Research Statement: Data and code used in this research are available online at: https://doi.org/10.5281/zenodo. 5851638.

Abstract

Long-term changes in the age and size structure of animal populations are well-documented, yet their impacts on population productivity are poorly understood. Fishery exploitation can be a major driver of changes in population age-size structure, because fisheries significantly increase mortality and often selectively remove larger and older fish. Climate change is another potential driver of shifts in the demographic structure of fish populations. Northeast Arctic (NEA) cod is the largest population of Atlantic cod (Gadus morhua) and one of the world's most important commercial fish stocks. This population has experienced considerable changes in population agesize structure over the past century, largely in response to fishing. In this study, we investigate whether changes in spawner age structure have affected population productivity in NEA cod, measured as recruits per spawning stock biomass, over the past 75 years. We find evidence that shifts in age structure toward younger spawners negatively affect population productivity, implying higher recruitment success when the spawning stock is composed of older individuals. The positive effect of an older spawning stock is likely linked to maternal effects and higher reproductive output of larger females. Our results indicate a three-fold difference in productivity between the youngest and oldest spawning stock that has been observed since the 1950s. Further, our results suggest a positive effect of environmental temperature and a negative effect of intraspecific cannibalism by older juveniles on population productivity, which partly masked the effect of spawner age structure unless accounted for in the model. Collectively, these findings emphasize the importance of population age structure for the productivity of fish populations, and suggest that harvest-induced demographic changes can have negative feedbacks for fisheries that lead to a younger spawning stock. Incorporating demographic data into harvest strategies could thus facilitate sustainable fishery management.

35 Keywords: age structure, demography, exploitation, population productivity, reproductive output

INTRODUCTION

Animal populations are inherently structured with respect to age, size, and life-history stage. The age structure of the adult population is determined by a species' life-history, in particular the maturation schedule and longevity, as well as potential sources of mortality that alter the age composition of the population. In fish populations, harvesting can be a major driver of changes in age and size structure, because fisheries increase mortality such that fewer individuals survive to old age, and because fisheries often selectively remove larger and older fish (Law 2000; Berkeley et al. 2004; Beamish et al. 2006; Barnett et al. 2017). These changes may persist after fishing pressure is reduced if fishing has resulted in evolutionary changes in traits related to growth and maturation (Jørgensen et al. 2007; Swain et al. 2007; Wright and Trippel 2009; Heino et al. 2015). Fisheries-induced demographic change of a population can have negative repercussions for a fishery via increased variability in abundance (Anderson et al. 2008; Shelton and Mangel 2011; Botsford et al. 2014). While the impact of large individuals on population health and replenishment remains controversial (Brunel and Piet 2011; Andersen et al. 2019), the importance of conserving diverse age-size structures of populations has been emphasized in the context of fisheries sustainability (Birkeland and Dayton 2005; Hsieh et al. 2010; Stige et al. 2017; Ahrens et al. 2020; Marshall et al. 2021).

In addition to exploitation, environmental changes contribute to shifting age structures through altered rates of growth and survival as well as the selection they impose on maturation schedules. One potential cause of contemporary changes in population age and size structure is climate warming (Daufresne et al. 2009; Gardner et al. 2011; Forster et al. 2012). Warming is expected to result in a faster life-history with higher growth rates and earlier maturation, as long as thermal conditions rarely exceed optimal temperatures for growth and survival (Ohlberger 2013;

Baudron et al. 2014; Huss et al. 2019). The effects of warming depend on currently experienced temperatures relative to organism thermal constraints, and may vary by population within species, for instance along latitudinal gradients (Ohlberger 2013). While the impacts of climate warming on fish body size also vary between species and may depend on local ecological conditions and life-history traits (van Rijn et al. 2017; Audzijonyte et al. 2020; Denderen et al. 2020), changes in thermal regimes commonly result in altered population age-size structures. Shifts in demographic structure can affect population productivity through various mechanisms. First, shifts toward younger and smaller female spawners are expected to cause a reduction in average per capita reproductive output, because smaller females carry fewer and often smaller or lower quality eggs (Kjesbu et al. 1996; Murawski 2001; Scott et al. 2006; Ohlberger et al. 2020). In many marine fish species, female reproductive investment scales hyperallometrically with body mass, such that the total energy invested into reproduction per unit biomass increases with spawner body size (Hixon et al. 2014; Barneche et al. 2018). Second, a spawning stock that is composed of older females may also result in higher population recruitment due to a variety of maternal effects. In the Northeast Arctic (NEA) stock of Atlantic cod (Gadus morhua), for instance, older females spawn in different locations and over longer periods of time (Kjesbu et al. 1996; Wright and Trippel 2009; Opdal and Jørgensen 2015), are less likely to skip spawning (Jørgensen et al. 2006), and produce eggs and larvae that have higher survival rates (Solemdal 1997). Third, an older spawning stock may exhibit a higher proportion of female spawners due to sex-specific growth, maturation thresholds, and/or survival rates (Jørgensen 1990; Marshall et al. 2006). These studies suggest that spawner age structure may affect recruitment success and population productivity.

A diverse set of metrics has been used to describe changes in population age structure over time. The most commonly used metrics include the biomass-weighted mean age or mean weight of spawners, spawner age diversity, the proportion of old individuals in the population, and the proportion of repeat spawners (Marteinsdottir and Thorarinsson 1998; Ottersen et al. 2006; Ottersen 2008; Brunel 2010; Barnett et al. 2017). While shifts in demographic structure cannot be fully captured by any single age structure metric, such metrics are useful for illustrative and predictive purposes. Furthermore, which metric best reflects observed changes in age structure over time may depend on the processes involved and the major drivers of demographic change. For example, the proportion of old individuals in the population may best reflect shifting age structures due to the removal of large fish in size-selective fisheries, whereas mean age of the spawning stock may best reflect shifts in age structure in populations that have experienced longterm changes in age at first maturation, including evolutionary change.

While evidence exists that shifts towards a younger and less age diverse spawning stock can have negative effects on population recruitment and productivity, meta-analyses of marine fishes have found that these effects vary by population, for instance in Atlantic cod (Brunel 2010; Shelton et al. 2015). Populations differ in life-history characteristics such as growth, age at maturation, maximum age, and intrinsic density regulation due to size-based intraspecific competition and cannibalism (Anderson and Gregory 2000). Specifically, cannibalism mortality of pre-recruits may increase with the abundance of older juveniles that have recruited to the fishery but have not matured and are therefore not part of the spawning stock, as is the case for NEA cod (Bogstad et al. 1994; Yaragina et al. 2009). Accounting for other factors beyond spawner biomass might thus be critical to fully understand how the age structure of a population affects its productivity.

The NEA cod stock is currently the world's largest population of Atlantic cod and sustains a large and profitable fishery. The stock mainly feeds in the Barents Sea and spawns along the west and north coasts of Norway (Fig. 1). Changes in the population age structure of NEA cod have occurred for almost a century, largely in response to intense exploitation (Ottersen 2008; Eikeset et al. 2016). The typical age at maturation and the mean age of the spawning stock have both declined considerably during the $2^{\text {nd }}$ half of the $20^{\text {th }}$ century, although spawner age structure has partly recovered over the past two decades (Fig. 2), coinciding with a reduction in fishing mortality (Kjesbu et al. 2014). Here, we ask whether population productivity in NEA cod (measured as the natural logarithm of recruits per spawning stock biomass) is affected by changes in the age structure of the spawning stock. We test for effects of intraspecific predation of pre-recruits by older juveniles, and assess potential effects of other ecological conditions on population productivity, including changes in temperature and species interactions.

METHODS

Study species and region

NEA cod are mainly distributed throughout the Barents Sea off the northern coasts of Norway and Russia. Adults perform annual migrations to the spawning grounds along the west coast of Norway, where they spawn primarily in March-April (Fig. 1; Ottersen et al. 2014). Spawned eggs drift northeastward in the Norwegian Coastal Current and develop into pelagic larvae and juveniles that reach the main feeding grounds in the Barents Sea after about five months of drift. The fish remain in the Barents Sea until they reach maturity, typically at the age of 6-8 years (Olsen et al. 2010). Compared to other populations of Atlantic cod, NEA cod are relatively slow growing and late maturing (Köster et al. 2013). NEA cod can grow to over 1 m in length and live
over 20 years (Holt and Jørgensen 2014). The stock has been harvested for centuries along the Norwegian cost, and more recently (since the 1930s) in the Barents Sea.

Data sources

We used annual estimates of numbers at age, weight at age, and proportion mature at age as reported in the NEA cod stock assessment (ICES 2020). NEA cod are assumed to recruit to the fishery at age-3, and recruitment is measured as the abundance of 3-year-old fish (ICES 2020). Numbers at age include cod ages 1-13 and a plus group combining all fish ages 14 and older.

Temperature data were obtained from the Kola transect (Tereschenko 1996), an indicator of the thermal conditions in the Barents Sea (Ottersen and Stenseth 2001). We used a mean temperature value averaged over six months (July-December), across Kola stations 3-7 (Fig. 1), and vertically from 0-200m depth (available online at: www.pinro.ru). Temperature records were available for the years 1946-2017, except during August-December 2016. These data were added using bivariate interpolation of temperature data (using function interp in R) across years and months. Data on biomass and abundances of interacting species were obtained from various sources. These include estimates of total abundance of capelin (Mallotus villosus) in the Barents Sea for the years 1972-2015 (ICES 2020), estimates of Norwegian spring spawning herring (Clupea harengus) biomass (ages 1-2) for the years 1950-2015 (ICES 2020), an index of krill abundance for the years 1950-2005 based on Russian bottom surveys in winter (Zhukova et al. 2009), and a zooplankton abundance index (copepod nauplii) based on Russian surveys in April-May and June-July for the years 1959-1990 (Stige et al. 2010). We also included a more recent index of zooplankton biomass in the southwestern and central Barents Sea in summer (AugustSeptember) for the years 1981-2015 (Stige et al. 2018). Previous studies suggested that recruitment success in NEA cod depends on the abundance of mesozooplankton, a critical food
$165 \quad \bar{A}_{y}=\frac{\sum_{a} S_{a, y} a}{\sum_{a} S_{a, y}}$.

167
$S_{y}=\sum_{a} S_{a, y}$.
$\bar{W}_{y}=\frac{\sum_{a} S_{a, y} W_{a, y}}{\sum_{a} S_{a, y}}$.
source for early life-stages of cod, the abundance of capelin, another important prey species, via increased growth and reduced inter-cohort cannibalism, as well as the biomass of herring, which feed on capelin larvae and thus affect capelin recruitment (Hamre 1994; Hjermann et al. 2007; Langangen et al. 2017).

Calculating stock metrics

Spawner biomass of cod at age a in year $y\left(S_{a, y}\right)$ was calculated from annual numbers at age ($\left.N_{a, y}\right)$, weight at age $\left(W_{a, y}\right)$, and proportion mature at age $\left(M_{a, y}\right)$:
$S_{a, y}=N_{a, y} W_{a, y} M_{a, y}$,

Total spawning stock biomass in a given year was then calculated as the sum across ages:

The biomass of 3-6 year-old cod was used as a proxy for potential cannibalism on pre-recruits:
$C_{y}=\sum_{a=3}^{a=6} N_{a, y} W_{a, y}$.

This index of cannibal biomass is only weakly correlated with spawning stock biomass because NEA cod typically do not mature before age-6 (Olsen et al. 2010).

We used biomass-weighted mean age of spawners $\left(\bar{A}_{y}\right)$ as a metric of spawner age structure, as done previously for this and other stocks (Ottersen et al. 2006; Ottersen 2008):

We also used the biomass-weighted mean weight $\left(\bar{W}_{y}\right)$ of spawners (Langangen et al. 2019):

Previous work that explored various metrics of spawner age and size structure as predictors of changes in the abundance and distribution of NEA cod eggs found that biomass-weighted mean age and weight were better predictors than other metrics (Stige et al. 2017), and spawner mean age appears to reflect the major shift in spawner age structure in this population (Appendix S1: Fig. S1). However, we considered other commonly used metrics of spawner age structure in our model selection, specifically the proportion of individuals in the oldest age class (+group), the Shannon index of age diversity, and the proportion of repeat spawners, (Marteinsdottir and Thorarinsson 1998; Brunel 2010; Barnett et al. 2017).

We calculated an index of the proportion of the oldest fish in the population as the log ratio of the proportion of individuals in the plus group in any given year relative to the proportion of individuals in the plus group at the beginning of the time series $\left(P G_{y}\right)$ (Barnett et al. 2017):
$P G_{y}=\log \left(\frac{p P G_{y}}{p P G_{y=1946}}\right)$, with $p P G_{y}=\frac{N_{a \geq 15, y}}{\sum_{a=1}^{a=14} N_{a, y}}$,
where $p P G_{y}$ is the proportion of the plus group individuals (ages $15+$) in the population.

The Shannon diversity index $\left(D I V_{y}\right)$ was calculated based on the frequency of mature biomass at age $\left(f_{a, y}\right)$:
$D I V_{y}=-\sum_{a}\left(f_{a, y} \ln \left(f_{a, y}\right)\right)$, for $f_{a, y}>0$.

The proportion repeat spawners $\left(P R S_{y}\right)$ was calculated based on the proportions mature in each age and year:
$P R S_{y}=\frac{\sum_{a}\left(M_{a-1, y-1} / M_{a, y}\right) S_{a, y}}{\sum_{a} S_{a, y}}$.

Statistical analyses

Our analysis is based on a Ricker stock-recruitment model (Ricker 1954) to describe the relationship between spawning stock biomass in year $y\left(S_{y}\right)$ and subsequent recruitment $\left(R_{y+3}\right)$ three years later. The linearized version is:
$\ln \left(\frac{R_{y+3}}{S_{y}}\right)=\alpha+\beta S_{y}+\epsilon_{y}$,
where α is the intercept, β is the rate at which productivity declines with spawner biomass ($\beta \leq 0$), and ϵ_{y} is an error term that was modeled to account for autocorrelation in the residuals:
$\epsilon_{y}=\epsilon_{y-1} \varphi+\omega_{y}$,
where φ is the autocorrelation coefficient and $\omega_{y} \sim \mathrm{~N}\left(0, \sigma^{2}\right)$ are normal random errors.

The natural logarithm of recruits per spawner biomass was thus used as a metric of population productivity. To explain variation in population productivity over time beyond the effect of spawner biomass, we extended this model to incorporate other predictor variables:
$\ln \left(\frac{R_{y+3}}{S_{y}}\right)=\alpha+\beta_{0} S_{y}+\beta_{1} X_{1}+\ldots+\beta_{n} X_{n}+\epsilon_{y}$,
where $\beta_{1}, \ldots, \beta_{n}$ are the regression coefficients and X_{1}, \ldots, X_{n} are the covariate time series lagged relative to spawn year when the covariate is hypothesized to affect population productivity via effects on spawners, eggs, larvae, or pre-recruit juveniles. By using a linearized Ricker model, we implicitly assume that potential covariate effects are additive on log scale (multiplicative on arithmetic scale), and we test whether covariates affect population productivity, not whether they modulate the density dependence between recruitment and spawner biomass.

We considered the following continuous predictor variables in addition to total spawner biomass, which was set as a fixed term in the regression analysis: biomass of age 3-6 cannibals in the year after spawning (as a proxy of intraspecific predation by preceding cohorts during the pre-recruit
life-stages), average temperature of the Kola section in the Barents Sea from July through December, i.e. during the larval and 0 -group stages, and one of the age structure metrics: biomass-weighted mean age or mean weight of spawners, the Shannon index of age diversity, the proportion of individuals in the plus group, and the proportion of repeat spawners. We did not include more than one age structure metric in the same model due to high pairwise correlations among these metrics. We considered other seasonal temperature averages during our preliminary analysis that were less strongly associated with our response variable. All of the above covariate time series were available for all years with data on spawner biomass and recruitment (19462017), with the exception that the proportion repeat spawners could not be computed for the first year. A lag of one year post spawning was used for the cannibal biomass covariate because cannibalism mortality is highest among 1-year old cod (Yaragina et al. 2009). We also tested for effects of food web interactions, using indices of capelin abundance, biomass of young herring (ages 1-2), krill abundance, and mesozooplankton abundance, which were not available for all years. The model selection was run using years with observations for each predictor, and was extended to include more years as predictors with shorter time series were dropped from the model. Information on covariates included in the model selection, available data, lags considered, and potential mechanisms are presented in the Supplementary Material (Appendix S1: Table S 1). We considered non-linear temperature effects by including a quadratic term in addition to the linear effect, and tested for an interaction effect between temperature and age structure (Ottersen et al. 2006), by constructing a dummy variable representing 'high' and 'low' values. The optimal threshold for splitting the age structure metric into two categories was determined by testing a range of quantiles (0.2-0.8).

Model selection was performed using the dredge function of the package MuMIn (v. 1.43.15, Burnham and Anderson 2002) in R (R Core Team 2020) and was based on Akaike's Information Criterion corrected for small sample size (AICc). All variables were centered and standardized to a mean of zero and a standard deviation of one for the analysis to ensure that main effects are biologically interpretable in the presence of interactions and that slopes are comparable within and between models (Schielzeth 2010). We tested for the inclusion of model weights for explaining the variance structure of the residuals using fixed and exponential functions of the selected covariates (Zuur et al. 2010). Because we tested a variable threshold effect for the interaction between temperature and mean age, we penalized the interaction model when calculating the AICc value by counting the threshold as one additional parameter (Ottersen et al. 2013). We assessed multicollinearity between selected explanatory variables using variance inflation factors (VIF) (Zuur et al. 2010).

To assess the ability of the models of varying complexity to make out-of-sample predictions, we performed a model cross validation. The data were randomly split into a training dataset (75\% of data) and a test dataset (25% of data), and all sub-models contained in the selected model with the lowest AICc value were run on the training data to estimate the model parameters and subsequently predict the remaining test data. We then calculated the root mean squared prediction error (RMSE) as our performance metric:

RMSE $=\sqrt{\frac{\sum_{1}^{n}(\hat{y}-y)^{2}}{n}}$,
where \hat{y} and y are model-predicted and observed $\ln ($ recruits $/ \mathrm{SSB})$ in each year, respectively, and n is the number of years. This procedure was repeated 1000 times by randomly drawing the training and test datasets from the observations. The median root mean squared prediction errors
across runs were compared among all sub-models to assess which of the models would produce the best out-of-sample predictions, i.e. smallest median prediction errors. Code for the statistical analyses is provided as supporting information (Data S1) and is available online in Zenodo at: https://doi.org/10.5281/zenodo. 5851638.

RESULTS

Over the past 75 years, spawning stock biomass of NEA cod has varied between 0.1 and 2.64 million tons with an average of 0.62 million tons, and recruitment at age- 3 has varied between 0.11 and 2.59 billion recruits with an average of 0.75 billion recruits (Fig. 2). Population productivity measured as $\ln ($ recruits/SSB) has varied considerably over time and was particularly low during the 2010s when spawning stock biomass was high.

Population age structure was an important predictor of population productivity in NEA cod. Several of the age structure metrics performed similarly well in terms of AICc and model predictive ability (Appendix S1: Table S4; Fig. S2), and our model selection showed support for including the same covariates in models with alternative age structure metrics. In addition to spawning stock biomass, the final models included the biomass of age 3-6 cannibals, mean temperature, and one of the age structure metrics:
$\ln \left(\frac{R_{y+3}}{S_{y}}\right)=\alpha+\beta_{0} S_{y}+\beta_{1} A_{y}+\beta_{2} C_{y+1}+\beta_{3} T_{y}+\epsilon_{y}$,
where A_{y} is the age structure metric in year y, C_{y+1} is biomass of potential cannibals in the following year, and T_{y} is mean environmental temperature in year y from July to December. Time series of selected covariates are presented in Fig. 2. Productivity of NEA cod was not associated with any of the abundance or biomass indices of the interacting species that we
considered in the model. We did not find evidence for the inclusion of model weights to explain the variance structure in the data.

We found that population productivity was negatively associated with spawning stock biomass (mature fish age 6 or older) and the biomass of potential cannibals (mostly immature fish ages 36), and positively associated with mean temperature and the age structure metrics (Fig. 3). While spawner mean age performed best in terms of model predictive ability, other age structure metrics resulted in similar prediction errors and AICc values (Appendix S1: Table S4; Fig. S2). Specifically, the log ratio of the proportion of old individuals (ages $15+$) in the population and spawner age diversity were similarly good predictors of population productivity (Fig. 3).

The AICc-based model selection of covariates resulted in competing models with similar AICc support (Appendix S1: Table S2). The more complex model included an interaction effect between temperature and the age structure metric as categorical variable (e.g. spawner mean age with a threshold at the 0.7 quantile, Appendix S1: Fig. S3). However, the simpler model received support based on the model cross-validation due to lower root mean squared prediction errors and was selected as the most parsimonious model (Appendix S1: Fig. S4). Residuals suggested no violation of assumptions of normality and homoscedasticity and model predictions captured much of the trends and interannual variability in population productivity (Appendix S1: Fig. S5). The estimated model coefficients (per unit standard deviation) are provided in Appendix S1: Table S3. The standard deviation of the normal random error was 0.54 , and the autocorrelation coefficient was 0.47 (mean age model). While spawning stock biomass, metrics of spawner age structure, and cannibal biomass are intrinsic population metrics, pairwise correlations between covariates of the fitted models were low (Pearson correlation coefficients <0.4), and a variance inflation factor analysis of the selected covariates raised no concern of multicollinearity (all
values <1.2). Inclusion of alternative age structure metrics did not appreciably alter the estimated coefficients for spawning stock biomass, biomass of cannibals, and mean temperature (Fig. 3).

The selected models were used to predict $\ln ($ recruits $/ \mathrm{SBB})$ as a function of spawning stock biomass for different values of the age structure metrics while setting other covariates (cannibal biomass and temperature) to median values. We used the $2.5^{\text {th }}$ and $97.5^{\text {th }}$ percentiles of spawner mean age, log ratio of the proportion plus group, and the spawner age diversity index that have been observed over the past 75 years. The predictions illustrated the large effect that spawner age structure has on expected recruits per spawning stock biomass (Fig. 3). For example, the ratio of model-predicted recruits/SBB at the highest compared to the lowest mean age was 3.04. A spawning stock with a mean age of about 11 years is expected to produce three times as many recruits per unit spawner biomass compared to a spawning stock with a mean age of about 7 years. We further found that the effects of spawner age structure were slightly weaker when the biomass of age 3-6 cod was not included in the model. Dropping cannibal biomass from the model resulted in smaller effect sizes of spawner age structure, and reduced model predictive ability (Appendix S1: Fig. S4, Fig. S6).

DISCUSSION

We find evidence that the mean age of spawners, or alternatively age diversity or the proportion of old individuals in the population, has a positive effect on population productivity, measured as recruits per spawning stock biomass. Our results suggests a three-fold difference in population productivity between the lowest and highest mean ages of spawners that have been observed over the past 75 years. In addition, we find evidence that the biomass of potential cannibals negatively affects population productivity, and that increasing temperatures have a positive effect on the productivity of this high-latitude cod population.

Previous work has evaluated the effect of spawner age structure on cod population recruitment. Ottersen (2008) analyzed data on NEA cod and found no clear link between the mean age of spawners and subsequent recruitment. Brunel (2010) studied multiple stocks of Atlantic cod and found that the effects of spawner mean age and age diversity on recruitment were positive but non-significant for most cod stocks, including NEA cod. Shelton et al. (2015) used stock-recruit relationships that included maternal age structure to model the recruitment of several stocks of Atlantic cod and found that in many stocks a model with a maternal age effect was preferred, though they reported a relatively weak effect for NEA cod. However, these studies did not account for potential cannibalism of pre-recruits by older juveniles that have recruited to the fishery but are not part of the spawning stock. Because NEA cod rarely mature before age 6 , and predation by 3-6 year-olds accounts for most of the cannibalism mortality among pre-recruits (Bogstad et al. 1994; Yaragina et al. 2009), the majority of potential cannibals are not part of the spawning stock. We therefore included cannibal biomass as an additional variable in our model. Ignoring this component of intrinsic population regulation likely affects inferences about other factors affecting productivity, especially because cannibalism in NEA cod appears to be more pronounced than in other stocks (Holt et al. 2019). This is in line with our finding that the effect of spawner age structure was weaker when the biomass of age 3-6 cod was not included in the model. It should be noted that our analysis relies on data from a stock-assessment model that are assumed to represent true values. The NEA stock assessment model considers cannibalism mortality, in addition to a fixed natural mortality, and the underlying estimation of consumption of cod by cod based on stomach content data is uncertain and affected by temperature (ICES 2020). This might introduce bias into our model estimates, in particular the cannibalism effect.

The higher recruitment success per unit spawner biomass of an older and more age diverse spawning stock is in part caused by an increase in mass-specific reproductive investment with female body size. Hyperallometric scaling of reproductive output is commonly observed in marine fishes, including Atlantic cod (Barneche et al. 2018), and interannual variation in relative fecundity is associated with variation in the size composition of the spawning stock in NEA cod (Marshall et al. 2006). While the approach applied here does not allow us to quantify the contributions of different mechanisms, our findings suggest that other factors linked to maternal effects contribute to increased population productivity of an older spawning stock, because productivity was more strongly linked to the mean age of spawners than the mean weight of spawners. Maternal effects may arise from various mechanisms, including differences between young and old spawners in the duration of spawning, frequency of skipped spawning, and factors such as larger eggs that can result in higher offspring survival (Solemdal et al. 1995; Kjesbu et al. 1996; Nissling et al. 1998; Vallin and Nissling 2000; Jørgensen et al. 2006). Other mechanisms appear to be less important, for instance, a broader spatial distribution of eggs has little effect on recruitment in NEA cod (Stige et al. 2017; Langangen and Stige 2021).

We found a positive but relatively weak link between NEA cod productivity and temperature, as reported previously (Ottersen and Loeng 2000; Stige et al. 2010; Ohlberger et al. 2014). Higher temperatures likely increase growth and survival during early life-stages. Impacts of warming may also differ between life-stages (Peck et al. 2009), and manifest though various mechanisms, including changes in the abundance and distribution of predators and prey (Ohlberger 2013; Ottersen et al. 2014). In NEA cod, higher temperatures also appear to be linked to spawning at higher latitudes (Sundby and Nakken 2008; Langangen et al. 2019; but see Opdal and Jørgensen 2015). Importantly, climate warming can affect populations of the same species differently. The
relationship between environmental temperature and recruitment of Atlantic cod varies by population, with positive effects at higher latitudes and negative effects at lower latitudes (Drinkwater 2005). Interestingly, we found similar support for a model that included an interaction between temperature and age structure (as a categorical variable), which suggested a positive temperature effect at low mean age, age diversity or proportion plus group, but no effect at high values. While that model was not selected as the most parsimonious due to its lower predictive performance, such an interaction would be consistent with previous work that suggested a strengthening of the climate-recruitment link during the second half of the $20^{\text {th }}$ century (Ottersen et al. 2006).

The reduction in population productivity associated with shifting spawner age structure is of particular importance because fisheries increase mortality and often selectively remove large individuals from the spawning populations. Fishing commonly leads to population age structures shifting towards younger and smaller fish (Anderson et al. 2008; Sharpe and Hendry 2009) and may result in evolutionary changes toward earlier maturation (Kuparinen and Merilä 2007; Heino et al. 2015). While evidence exists that changes in the age structure of NEA cod largely occurred in response to exploitation (Ottersen 2008; Eikeset et al. 2016), it is conceivable that increasing temperatures contribute to reduced mean age of spawners via effects on growth and maturation (Forster et al. 2012; Baudron et al. 2014; Huss et al. 2019). Our results thus suggest that intense capture fisheries can affect the productivity of the populations they depend on, not only via changes of total spawner abundance, but also by altering the age structure of the spawning stock. Changes related to species life-histories, such as shifting spawner age structures, are increasingly recognized to impact population recruitment (Shelton et al. 2015). Our study shows that age structure can have significant impacts on fish stock productivity, which in turn
might affect the long-term sustainable yield of commercial fisheries and the livelihoods that depend on these fisheries. A model including spawner mean age had a slightly better predictive ability compared to models including alternative age structure metrics in our study. While mean age has been criticized as a poor descriptor of the age composition of a population and is difficult to link to individual-level traits (Shelton et al . 2015), spawner mean age appears to capture the shift in age composition of the NEA cod spawning stock (Appendix S1: Fig. S1), likely because these shifts are associated with changes in age at first maturation. Alternative metrics such as the proportion of old individuals in the population may be better suited to reflect age structure changes in other exploited populations, for example those that have not experienced long-term changes in maturation schedules.

Our findings highlight the potential of preserving spawner age structure as a tool to sustaining population productivity. Shifting age structures of fish populations can also cause increased variability in abundance and reduced population resilience (Anderson et al. 2008; Hsieh et al. 2010; Shelton and Mangel 2011). Incorporating demographic information into the fishery management process could help preserve an older and more diverse age structure and thereby facilitate fisheries sustainability. Whether the best approach to preserving spawner age structure is via size or weight limits, spatial fishery closures, or reduced fishing mortality, likely depends on the ecology of the exploited population as well as fishing methods and current management practices (Berkeley et al. 2004; Kjesbu et al. 2014; Ahrens et al. 2020). For instance, the NEA cod fishery is currently managed via a harvest control rule that is used to set the total allowable catch each year based on reference points for spawning stock biomass and fishing mortality. This rule was designed to ensure that the stock is harvested sustainably (ICES 2009; Eikeset et al. 2013), and its implementation in the mid-2000s appears to have contributed to increased spawner
biomass and mean age (Kjesbu et al. 2014; Fig. 1). In addition to biomass or fishing mortality limits, harvest control rules could adopt reference points based on the demographic status of a population to further ensure that population reproductive capacity is maintained.

ACKNOWLEDGEMENTS

Support for this study was provided by the Research Council of Norway through the projects SpaceShift (grant no. 280468) and FishCom (grant no. 280467).

LITERATURE CITED

Ahrens R. N. M., M. S. Allen, C. Walters, and R. Arlinghaus. 2020. Saving large fish through harvest slots outperforms the classical minimum-length limit when the aim is to achieve multiple harvest and catch-related fisheries objectives. Fish and Fisheries 21:483-510.

Andersen K. H., N. S. Jacobsen, and P. D. van Denderen. 2019. Limited impact of big fish mothers for population replenishment. Canadian Journal of Fisheries and Aquatic Sciences 76:347-349.

Anderson C. N. K., et al. 2008. Why fishing magnifies fluctuations in fish abundance. Nature 452:835-839.

Anderson J., and R. S. Gregory. 2000. Factors regulating survival of northern cod (NAFO 2J3KL) during their first 3 years of life. ICES Journal of Marine Science 57:349-359.

Audzijonyte A., et al. 2020. Fish body sizes change with temperature but not all species shrink with warming. Nature Ecology \& Evolution 4:809-814.

Barneche D. R., D. R. Robertson, C. R. White, and D. J. Marshall. 2018. Fish reproductiveenergy output increases disproportionately with body size. Science 360:642-644.

Barnett L. A. K., T. A. Branch, R. A. Ranasinghe, and T. E. Essington. 2017. Old-growth fishes become scarce under fishing. Current Biology 27:2843-2848.

Baudron A. R., C. L. Needle, A. D. Rijnsdorp, and T. Marshall C. 2014. Warming temperatures and smaller body sizes: synchronous changes in growth of North Sea fishes. Global Change Biology 20:1023-1031.

Beamish R. J., G. A. McFarlane, and A. Benson. 2006. Longevity overfishing. Progress in Oceanography 68:289-302.

Berkeley S. A., M. A. Hixon, R. J. Larson, and M. S. Love. 2004. Fisheries sustainability via protection of age structure and spatial distribution of fish populations. Fisheries Oceanography 29:23-32.

Birkeland C., and P. Dayton. 2005. The importance in fishery management of leaving the big ones. Trends in Ecology \& Evolution 20:356-358.

Bogstad B., G. R. Lilly, S. Meh1, O. K. Palsson, and G. Stefansson. 1994. Cannibalism and yearclass strength in Atlantic cod (Gadus morhua L.) in Arcto-boreal ecosystems (Barents Sea, Iceland, and eastern Newfoundland). ICES Marine Science Symposia 198:576-599.

Botsford L. W., M. D. Holland, J. C. Field, and A. Hastings. 2014. Cohort resonance: a significant component of fluctuations in recruitment, egg production, and catch of fished populations. ICES Journal of Marine Science 71:2158-2170.

Brunel T. 2010. Age-structure-dependent recruitment: a meta-analysis applied to Northeast Atlantic fish stocks. ICES Journal of Marine Science 67:1921-1930.

Brunel T., and G. J. Piet. 2013. Is age structure a relevant criterion for the health of fish stocks? ICES Journal of Marine Science 70:270-283.

Burnham K. P., and D. R. Anderson. 2002. Model Selection and Multimodel Inference, Second edition edn (eds Burnham KP, Anderson DR). Springer-Verlag, New York, NY.

Daufresne M., K. Lengfellner, and U. Sommer. 2009. Global warming benefits the small in aquatic ecosystems. Proceedings of the National Academy of Sciences USA 106:1278812793.

Denderen D., H. Gislason, J. Heuvel, and K. H. Andersen. 2020. Global analysis of fish growth rates shows weaker responses to temperature than metabolic predictions. Global Ecology and Biogeography 29:2203-2213.

Drinkwater K. 2005. The response of Atlantic cod (Gadus morhua) to future climate change. ICES Journal of Marine Science 62:1327-1337.

Eikeset A. M., E. S. Dunlop, M. Heino, G. Storvik, N. C. Stenseth, and U. Dieckmann. 2016. Roles of density-dependent growth and life history evolution in accounting for fisheriesinduced trait changes. Proceedings of the National Academy of Sciences USA 113:15030-15035.

Forster J., A. G. Hirst, and D. Atkinson. 2012. Warming-induced reductions in body size are greater in aquatic than terrestrial species. Proceedings of the National Academy of Sciences USA 109:19310-19314.

Gardner J. L., A. Peters, M. Kearney, L. Joseph, and R. Heinsohn. 2011. Declining body size: a third universal response to warming? Trends in Ecology \& Evolution 26:285-291.

Hamre J. 1994. Biodiversity and exploitation of the main fish stocks in the Norwegian - Barents Sea ecosystem. Biodiversity and Conservation 3:473-492.

Heino M., B. Díaz Pauli, and U. Dieckmann. 2015. Fisheries-Induced Evolution. Annual Review of Ecology and Systematics 46:461-480.

Hixon M. A., D. W. Johnson, and S. M. Sogard. 2014. BOFFFFs: on the importance of conserving old-growth age structure in fishery populations. ICES Journal of Marine Science 71:2171-2185.

Hjermann D. Ø., B. Bogstad, A. M. Eikeset, G. Ottersen, H. Gjøsæter, and N. C. Stenseth. 2007. Food web dynamics affect Northeast Arctic cod recruitment. Proceedings of the Royal Society B: Biological Sciences 274:661-669.

Holt R. E., and C. Jorgensen. 2014. Climate warming causes life-history evolution in a model for Atlantic cod (Gadus morhua). Conservation Physiology 2:cou050. https://doi.org/10.1093/conphys/cou050

Holt R. E., B. Bogstad, J. M. Durant, A. V. Dolgov, and G. Ottersen. 2019. Barents Sea cod (Gadus morhua) diet composition: long-term interannual, seasonal, and ontogenetic patterns. ICES Journal of Marine Science 76:1641-1652.

Hsieh C.-H., A. Yamauchi, T. Nakazawa, and W. F. Wang. 2010. Fishing effects on age and spatial structures undermine population stability of fishes. Aquatic Sciences 72:165-178.

Huss M., M. Lindmark, P. Jacobson, RM. van Dorst, and A. Gårdmark. 2019. Experimental evidence of gradual size-dependent shifts in body size and growth of fish in response to warming. Global Change Biology 25:2285-2295.

ICES. 2009. Report of the ICES Advisory Committee 2009. ICES Advice 2009.

ICES. 2020. Arctic Fisheries Working Group (AFWG). ICES Scientific Reports 2:52. http://doi.org/10.17895/ices.pub. 6050

Jørgensen T. 1990. Long-term chanes in age at sexual maturity of Northeast Arctic cod (Gadus morhua L.). ICES Journal of Marine Science 46:235-248

Jørgensen C., et al. 2007. Ecology: managing evolving fish stocks. Science 318:1247-1248.

Jørgensen C., B. Ernande, Ø. Fiksen, and U. Dieckmann. 2006. The logic of skipped spawning in fish. Canadian Journal of Fisheries and Aquatic Sciences 63:200-211.

Kjesbu O. S., P. Solemdal, P. Bratland, M. Fonn. 1996. Variation in annual egg production in individual captive Atlantic cod (Gadus morhua). Canadian Journal of Fisheries and Aquatic Sciences 53:610-620.

Kjesbu O. S., B. Bogstad, J. A. Devine, H. Gjøsæter, D. Howell, R. B. Ingvaldsen, R. D. M. Nash, and J. E. Skjæraasen. 2014. Synergies between climate and management for Atlantic cod fisheries at high latitudes. Proceedings of the National Academy of Sciences USA 111:3478-3483.

Köster F. W., E. A. Trippel, and J. Tomkiewicz. 2013. Linking size and age at sexual maturation to body growth, productivity and recruitment of Atlantic cod stocks spanning the North Atlantic. Fisheries Research 138:52-61.

Langangen Ø., J. Ohlberger, L. C. Stige, J. M. Durant, E. Ravagnan, N. C. Stenseth, and D. Ø. Hjermann. 2017. Cascading effects of mass mortality events in Arctic marine communities. Global Change Biology 23:283-292.

Langangen Ø., et al. 2019. Ticket to spawn: Combining economic and genetic data to evaluate the effect of climate and demographic structure on spawning distribution in Atlantic cod. Global Change Biology 25:134-143.

Langangen Ø., and L. C. Stige. 2021. Shedding light on the link between the spatial distribution of eggs and survival in Northeast Arctic cod. Fisheries Oceanography 30:429-436.

Law R. 2000. Fishing, selection, and phenotypic evolution. ICES Journal of Marine Science 57: 57:659-668.

Marshall C. T., C. L. Needle, A. Thorsen, O. S. Kjesbu, and N. A. Yaragina. 2006. Systematic bias in estimates of reproductive potential of an Atlantic cod (Gadus morhua) stock: implications for stock-recruit theory and management. Canadian Journal of Fisheries and Aquatic Sciences 63:980-994.

Marshall D. J., M. Bode, M. Mangel, R. Arlinghaus, and E. J. Dick. 2021. Reproductive hyperallometry and managing the world's fisheries. Proceedings of the National Academy of Sciences USA 118:e2100695118.

Marteinsdottir G., and K. Thorarinsson. 1998. Improving the stock-recruitment relationship in Icelandic cod (Gadus morhua) by including age diversity of spawners. Canadian Journal of Fisheries and Aquatic Sciences 55:1372-1377.

Murawski S. 2001. Impacts of demographic variation in spawning characteristics on reference points for fishery management. ICES Journal of Marine Science 58:1002-1014.

Nissling A., R. Larsson, L. Vallin, and K. Frohlund. 1998. Assessment of egg and larval viability in cod, Gadus morhua: methods and results from an experimental study. Fisheries Research 38:169-186.

Ohlberger J. 2013. Climate warming and ectotherm body size - from individual physiology to community ecology. Functional Ecology 27:991-1001.

Ohlberger J., L. A. Rogers, and N. C. Stenseth. 2014. Stochasticity and determinism: How density-independent and density-dependent processes affect population variability. PLoS ONE 9:e98940.

Ohlberger J., et al. 2020. The reproductive value of large females: consequences of shifts in demographic structure for population reproductive potential in Chinook salmon. Canadian Journal of Fisheries and Aquatic Sciences 77:1292-1301.

Olsen E., S. Aanes, S. Mehl, J. C. Holst, A. Aglen, and H. Gjøsæter. 2010. Cod, haddock, saithe, herring, and capelin in the Barents Sea and adjacent waters: A review of the biological value of the area. ICES Journal of Marine Science 67:87-101.

Opdal A. F., and C. Jørgensen. 2015. Long-term change in a behavioural trait: truncated spawning distribution and demography in Northeast Arctic cod. Global Change Biology 21:1521-1530.

Ottersen G. 2008. Pronounced long-term juvenation in the spawning stock of Arcto-Norwegian cod (Gadus morhua) and possible consequences for recruitment. Canadian Journal of Fisheries and Aquatic Sciences 65:523-534.

Ottersen G., and H. Loeng. 2000. Covariability in early growth and year-class strength of Barents Sea cod, haddock, and herring: the environmental link. ICES Journal of Marine Science 57:339-348.

Ottersen G., D. Ø. Hjermann, and N. C. Stenseth. 2006. Changes in spawning stock structure strengthen the link between climate and recruitment in a heavily fished cod (Gadus morhua) stock. Fisheries Oceanography 15:230-243.

Ottersen G., and N. C. Stenseth. 2001. Atlantic climate governs oceanographic and ecological variability in the Barents Sea. Limnology and Oceanography 46:1774-1780.

Ottersen G., L. C. Stige, J. M. Durant, K.-S. Chan, T. A. Rouyer, K. F. Drinkwater, and N. C. Stenseth. 2013. Temporal shifts in recruitment dynamics of North Atlantic fish stocks: effects of spawning stock and temperature. Marine Ecology Progress Series 480:205225.

Ottersen G., B. Bogstad, N. A. Yaragina, L. C. Stige, F. B. Vikebø, and P. Dalpadado. 2014. A review of early life history dynamics of Barents Sea cod (Gadus morhua). ICES Journal of Marine Science 71:2064-2087.

Peck L. S., M. S. Clark, S. A. Morley, A. Massey, and H. Rossetti. 2009. Animal temperature limits and ecological relevance: effects of size, activity and rates of change. Functional Ecology 23:248-256

R Core Team. 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Ricker W. E. 1954. Stock and recruitment. Journal of the Fisheries Research Board of Canada 11:559-623.
van Rijn I., Y. Buba, J. DeLong, M. Kiflawi, and J. Belmaker. 2017. Large but uneven reduction in fish size across species in relation to changing sea temperatures. Global Change Biology 23:3667-3674.

Schielzeth H. 2010. Simple means to improve the interpretability of regression coefficients. Methods in Ecology and Evolution 1:103-113.

Scott B. E., G. Marteinsdottir, G. A. Begg, P. J. Wright, and O. S. Kjesbu. 2006. Effects of population size/age structure, condition and temporal dynamics of spawning on reproductive output in Atlantic cod (Gadus morhua). Ecological Modelling 191:383-415.

Sharpe D. M. T., and A. P. Hendry. 2009. Life history change in commercially exploited fish stocks: an analysis of trends across studies. Evolutionary Applications 2:260-275.

Shelton A. O., and M. Mangel. 2011. Fluctuations of fish populations and the magnifying effects of fishing. Proceedings of the National Academy of Sciences USA 108:7075-7080.

Shelton A. O., J. A. Hutchings, R. S. Waples, D. M. Keith, H. R. Akçakaya, N. K. and Dulvy. 2015. Maternal age effects on Atlantic cod recruitment and implications for future population trajectories. ICES Journal of Marine Science 72:1769-1778.

Solemdal P. 1997. Maternal effects - a link between the past and the future. Journal of Sea Research 37:213-227.

Stige L. C., K. Ø. Kvile, B. Bogstad, and Ø. Langangen. 2018. Predator-prey interactions cause apparent competition between marine zooplankton groups. Ecology 25:151-10.

Stige L. C., et al. 2010. Direct and indirect climate forcing in a multi-species marine system. Proceedings of the Royal Society B: Biological Sciences 277:3411-3420.

Stige L. C., N. A. Yaragina, Ø. Langangen, B. Bogstad, N. C. Stenseth, and G. Ottersen. 2017. Effect of a fish stock's demographic structure on offspring survival and sensitivity to climate. Proceedings of the National Academy of Sciences USA 114:1347-1352.

Sundby S., and O. Nakken. 2008. Spatial shifts in spawning habitats of Arcto-Norwegian cod related to multidecadal climate oscillations and climate change. ICES Journal of Marine Science 65:953-962.

Swain D., A. Sinclair, and M. Hanson J. 2007. Evolutionary response to size-selective mortality in an exploited fish population. Proceedings of the Royal Society B: Biological Sciences 274:1015-1022.

Tereschenko V. V. 1996. Seasonal and year-to-year variations of temperature and salinity along the Kola meridian transect. ICES CM 1996/C:11.

Vallin L., and A. Nissling. 2000. Maternal effects on egg size and egg buoyancy of Baltic cod, Gadus morhua: implications for stock structure effects on recruitment. Fisheries Research 49:21-37.

Wright P. J., and E. A. Trippel. 2009. Fishery-induced demographic changes in the timing of spawning: consequences for reproductive success. Fish and Fisheries 10:283-304.

Yaragina N. A., B. Bogstad, and Y. A. Kovalev. 2009. Variability in cannibalism in Northeast Arctic cod (Gadus morhua) during the period 1947-2006. Marine Biology Research 5:75-85.

Zhukova N. G., V. N. Nesterova, I. P. Prokopchuk, and G. B. Rudneva. 2009. Winter distribution of euphausiids (Euphausiacea) in the Barents Sea (2000-2005). Deep Sea Research II 56:1959-1967.

Zuur A. F., E. Ieno, and C. Elphick. 2010. A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution 1:3-14.

FIGURE CAPTIONS

Fig. 1: Map showing the spawning locations and general distribution of NEA cod. Juvenile and adult NEA cod are mostly distributed in the Barents Sea (shaded area). The fish perform annual migrations to the spawning grounds (dark gray) along the Norwegian coast. Also indicated is the Kola section (station 3-7) in the Barents Sea (thick black line).

Fig. 2: Time series data. Shown are (a) spawning stock biomass (SSB, million tons) and recruitment (billions), (b) biomass of age 3-6 cod that are considered cannibals on pre-recruits, (c) temperature of the Kola section in the Barents Sea (red and blue indicate temperatures above and below the long-term average of $4.8^{\circ} \mathrm{C}$, respectively), and (d) three age structure metrics: biomass-weighted mean age of the spawning stock (blue), the log ratio of the proportion of old individuals (age 15+) in the population (green), and the Shannon index of spawner age diversity (orange).

Fig. 3: Estimated covariate effects and spawner-recruit predictions for models including alternative age structure metrics. Shown are standardized effect size estimates of all covariates in the three alternative models, including total spawner biomass, biomass of age 3-6 cannibals, mean temperature, and the age structure metric, where lines are 95% confidence intervals (a-c), partial effects on $\ln ($ recruits $/ \mathrm{SSB}$) of the age structure metrics, where shaded polygons are 95% confidence intervals (d-f), and predicted relationships between spawning stock biomass (million tons) and recruitment (billions) for the alternative age structure metrics (g-i). Predictions were made for two different values of the respective age structure metric, taken as the 2.5 th and 97.5 th percentiles, and assuming median values for the other predictors in the model (biomass of age 36 cod and mean temperature). Thin dashed lines represent two times the standard error of the predictions.

Mean age model

