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12 ABSTRACT

13 Long-term changes in the age and size structure of animal populations are well-documented, yet 

14 their impacts on population productivity are poorly understood. Fishery exploitation can be a 

15 major driver of changes in population age-size structure, because fisheries significantly increase 

16 mortality and often selectively remove larger and older fish. Climate change is another potential 

17 driver of shifts in the demographic structure of fish populations. Northeast Arctic (NEA) cod is 

18 the largest population of Atlantic cod (Gadus morhua) and one of the world’s most important 

19 commercial fish stocks. This population has experienced considerable changes in population age-

20 size structure over the past century, largely in response to fishing. In this study, we investigate 

21 whether changes in spawner age structure have affected population productivity in NEA cod, 

22 measured as recruits per spawning stock biomass, over the past 75 years. We find evidence that 

23 shifts in age structure toward younger spawners negatively affect population productivity, 

24 implying higher recruitment success when the spawning stock is composed of older individuals. 

25 The positive effect of an older spawning stock is likely linked to maternal effects and higher 

26 reproductive output of larger females. Our results indicate a three-fold difference in productivity 

27 between the youngest and oldest spawning stock that has been observed since the 1950s. Further, 

28 our results suggest a positive effect of environmental temperature and a negative effect of 

29 intraspecific cannibalism by older juveniles on population productivity, which partly masked the 

30 effect of spawner age structure unless accounted for in the model. Collectively, these findings 

31 emphasize the importance of population age structure for the productivity of fish populations, 

32 and suggest that harvest-induced demographic changes can have negative feedbacks for fisheries 

33 that lead to a younger spawning stock. Incorporating demographic data into harvest strategies 

34 could thus facilitate sustainable fishery management.
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36 INTRODUCTION

37 Animal populations are inherently structured with respect to age, size, and life-history stage. 

38 The age structure of the adult population is determined by a species’ life-history, in particular the 

39 maturation schedule and longevity, as well as potential sources of mortality that alter the age 

40 composition of the population. In fish populations, harvesting can be a major driver of changes 

41 in age and size structure, because fisheries increase mortality such that fewer individuals survive 

42 to old age, and because fisheries often selectively remove larger and older fish (Law 2000; 

43 Berkeley et al. 2004; Beamish et al. 2006; Barnett et al. 2017). These changes may persist after 

44 fishing pressure is reduced if fishing has resulted in evolutionary changes in traits related to 

45 growth and maturation (Jørgensen et al. 2007; Swain et al. 2007; Wright and Trippel 2009; 

46 Heino et al. 2015). Fisheries-induced demographic change of a population can have negative 

47 repercussions for a fishery via increased variability in abundance (Anderson et al. 2008; Shelton 

48 and Mangel 2011; Botsford et al. 2014). While the impact of large individuals on population 

49 health and replenishment remains controversial (Brunel and Piet 2011; Andersen et al. 2019), the 

50 importance of conserving diverse age-size structures of populations has been emphasized in the 

51 context of fisheries sustainability (Birkeland and Dayton 2005; Hsieh et al. 2010; Stige et al. 

52 2017; Ahrens et al. 2020; Marshall et al. 2021). 

53 In addition to exploitation, environmental changes contribute to shifting age structures through 

54 altered rates of growth and survival as well as the selection they impose on maturation schedules. 

55 One potential cause of contemporary changes in population age and size structure is climate 

56 warming (Daufresne et al. 2009; Gardner et al. 2011; Forster et al. 2012). Warming is expected 

57 to result in a faster life-history with higher growth rates and earlier maturation, as long as 

58 thermal conditions rarely exceed optimal temperatures for growth and survival (Ohlberger 2013; 
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59 Baudron et al. 2014; Huss et al. 2019). The effects of warming depend on currently experienced 

60 temperatures relative to organism thermal constraints, and may vary by population within 

61 species, for instance along latitudinal gradients (Ohlberger 2013). While the impacts of climate 

62 warming on fish body size also vary between species and may depend on local ecological 

63 conditions and life-history traits (van Rijn et al. 2017; Audzijonyte et al. 2020; Denderen et al. 

64 2020), changes in thermal regimes commonly result in altered population age-size structures.

65 Shifts in demographic structure can affect population productivity through various mechanisms. 

66 First, shifts toward younger and smaller female spawners are expected to cause a reduction in 

67 average per capita reproductive output, because smaller females carry fewer and often smaller or 

68 lower quality eggs (Kjesbu et al. 1996; Murawski 2001; Scott et al. 2006; Ohlberger et al. 2020). 

69 In many marine fish species, female reproductive investment scales hyperallometrically with 

70 body mass, such that the total energy invested into reproduction per unit biomass increases with 

71 spawner body size (Hixon et al. 2014; Barneche et al. 2018). Second, a spawning stock that is 

72 composed of older females may also result in higher population recruitment due to a variety of 

73 maternal effects. In the Northeast Arctic (NEA) stock of Atlantic cod (Gadus morhua), for 

74 instance, older females spawn in different locations and over longer periods of time (Kjesbu et 

75 al. 1996; Wright and Trippel 2009; Opdal and Jørgensen 2015), are less likely to skip spawning 

76 (Jørgensen et al. 2006), and produce eggs and larvae that have higher survival rates (Solemdal 

77 1997). Third, an older spawning stock may exhibit a higher proportion of female spawners due to 

78 sex-specific growth, maturation thresholds, and/or survival rates (Jørgensen 1990; Marshall et al. 

79 2006). These studies suggest that spawner age structure may affect recruitment success and 

80 population productivity.
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81 A diverse set of metrics has been used to describe changes in population age structure over time. 

82 The most commonly used metrics include the biomass-weighted mean age or mean weight of 

83 spawners, spawner age diversity, the proportion of old individuals in the population, and the 

84 proportion of repeat spawners (Marteinsdottir and Thorarinsson 1998; Ottersen et al. 2006; 

85 Ottersen 2008; Brunel 2010; Barnett et al. 2017). While shifts in demographic structure cannot 

86 be fully captured by any single age structure metric, such metrics are useful for illustrative and 

87 predictive purposes. Furthermore, which metric best reflects observed changes in age structure 

88 over time may depend on the processes involved and the major drivers of demographic change. 

89 For example, the proportion of old individuals in the population may best reflect shifting age 

90 structures due to the removal of large fish in size-selective fisheries, whereas mean age of the 

91 spawning stock may best reflect shifts in age structure in populations that have experienced long-

92 term changes in age at first maturation, including evolutionary change.

93 While evidence exists that shifts towards a younger and less age diverse spawning stock can 

94 have negative effects on population recruitment and productivity, meta-analyses of marine fishes 

95 have found that these effects vary by population, for instance in Atlantic cod (Brunel 2010; 

96 Shelton et al. 2015). Populations differ in life-history characteristics such as growth, age at 

97 maturation, maximum age, and intrinsic density regulation due to size-based intraspecific 

98 competition and cannibalism (Anderson and Gregory 2000). Specifically, cannibalism mortality 

99 of pre-recruits may increase with the abundance of older juveniles that have recruited to the 

100 fishery but have not matured and are therefore not part of the spawning stock, as is the case for 

101 NEA cod (Bogstad et al. 1994; Yaragina et al. 2009). Accounting for other factors beyond 

102 spawner biomass might thus be critical to fully understand how the age structure of a population 

103 affects its productivity.
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104 The NEA cod stock is currently the world’s largest population of Atlantic cod and sustains a 

105 large and profitable fishery. The stock mainly feeds in the Barents Sea and spawns along the 

106 west and north coasts of Norway (Fig. 1). Changes in the population age structure of NEA cod 

107 have occurred for almost a century, largely in response to intense exploitation (Ottersen 2008; 

108 Eikeset et al. 2016). The typical age at maturation and the mean age of the spawning stock have 

109 both declined considerably during the 2nd half of the 20th century, although spawner age structure 

110 has partly recovered over the past two decades (Fig. 2), coinciding with a reduction in fishing 

111 mortality (Kjesbu et al. 2014). Here, we ask whether population productivity in NEA cod 

112 (measured as the natural logarithm of recruits per spawning stock biomass) is affected by 

113 changes in the age structure of the spawning stock. We test for effects of intraspecific predation 

114 of pre-recruits by older juveniles, and assess potential effects of other ecological conditions on 

115 population productivity, including changes in temperature and species interactions. 

116 METHODS

117 Study species and region

118 NEA cod are mainly distributed throughout the Barents Sea off the northern coasts of Norway 

119 and Russia. Adults perform annual migrations to the spawning grounds along the west coast of 

120 Norway, where they spawn primarily in March-April (Fig. 1; Ottersen et al. 2014). Spawned 

121 eggs drift northeastward in the Norwegian Coastal Current and develop into pelagic larvae and 

122 juveniles that reach the main feeding grounds in the Barents Sea after about five months of drift. 

123 The fish remain in the Barents Sea until they reach maturity, typically at the age of 6-8 years 

124 (Olsen et al. 2010). Compared to other populations of Atlantic cod, NEA cod are relatively slow 

125 growing and late maturing (Köster et al. 2013). NEA cod can grow to over 1 m in length and live 
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126 over 20 years (Holt and Jørgensen 2014). The stock has been harvested for centuries along the 

127 Norwegian cost, and more recently (since the 1930s) in the Barents Sea.

128 Data sources

129 We used annual estimates of numbers at age, weight at age, and proportion mature at age as 

130 reported in the NEA cod stock assessment (ICES 2020). NEA cod are assumed to recruit to the 

131 fishery at age-3, and recruitment is measured as the abundance of 3-year-old fish (ICES 2020). 

132 Numbers at age include cod ages 1-13 and a plus group combining all fish ages 14 and older. 

133 Temperature data were obtained from the Kola transect (Tereschenko 1996), an indicator of the 

134 thermal conditions in the Barents Sea (Ottersen and Stenseth 2001). We used a mean temperature 

135 value averaged over six months (July-December), across Kola stations 3-7 (Fig. 1), and vertically 

136 from 0-200m depth (available online at: www.pinro.ru). Temperature records were available for 

137 the years 1946-2017, except during August-December 2016. These data were added using 

138 bivariate interpolation of temperature data (using function interp in R) across years and months. 

139 Data on biomass and abundances of interacting species were obtained from various sources. 

140 These include estimates of total abundance of capelin (Mallotus villosus) in the Barents Sea for 

141 the years 1972-2015 (ICES 2020), estimates of Norwegian spring spawning herring (Clupea 

142 harengus) biomass (ages 1-2) for the years 1950-2015 (ICES 2020), an index of krill abundance 

143 for the years 1950-2005 based on Russian bottom surveys in winter (Zhukova et al. 2009), and a 

144 zooplankton abundance index (copepod nauplii) based on Russian surveys in April-May and 

145 June-July for the years 1959-1990 (Stige et al. 2010). We also included a more recent index of 

146 zooplankton biomass in the southwestern and central Barents Sea in summer (August-

147 September) for the years 1981-2015 (Stige et al. 2018). Previous studies suggested that 

148 recruitment success in NEA cod depends on the abundance of mesozooplankton, a critical food 
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149 source for early life-stages of cod, the abundance of capelin, another important prey species, via 

150 increased growth and reduced inter-cohort cannibalism, as well as the biomass of herring, which 

151 feed on capelin larvae and thus affect capelin recruitment (Hamre 1994; Hjermann et al. 2007; 

152 Langangen et al. 2017).

153 Calculating stock metrics

154 Spawner biomass of cod at age  in year  ( ) was calculated from annual numbers at age (𝑎 𝑦 𝑆𝑎,𝑦

155 ), weight at age ( ), and proportion mature at age ( ): 𝑁𝑎,𝑦 𝑊𝑎,𝑦 𝑀𝑎,𝑦

156 , (1)𝑆𝑎,𝑦 = 𝑁𝑎,𝑦𝑊𝑎,𝑦𝑀𝑎,𝑦

157 Total spawning stock biomass in a given year was then calculated as the sum across ages:

158 . (2)𝑆𝑦 = ∑
𝑎𝑆𝑎,𝑦

159 The biomass of 3-6 year-old cod was used as a proxy for potential cannibalism on pre-recruits:

160 . (3)𝐶𝑦 = ∑𝑎 = 6
𝑎 = 3𝑁𝑎,𝑦𝑊𝑎,𝑦

161 This index of cannibal biomass is only weakly correlated with spawning stock biomass because 

162 NEA cod typically do not mature before age-6 (Olsen et al. 2010).

163 We used biomass-weighted mean age of spawners ( ) as a metric of spawner age structure, as 𝐴𝑦

164 done previously for this and other stocks (Ottersen et al. 2006; Ottersen 2008): 

165 . (4)𝐴𝑦 =
∑

𝑎𝑆𝑎,𝑦 𝑎

∑
𝑎𝑆𝑎,𝑦

166 We also used the biomass-weighted mean weight ( ) of spawners (Langangen et al. 2019):𝑊𝑦

167 . (5)𝑊𝑦 =
∑

𝑎𝑆𝑎,𝑦𝑊𝑎,𝑦 

∑
𝑎𝑆𝑎,𝑦
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168 Previous work that explored various metrics of spawner age and size structure as predictors of 

169 changes in the abundance and distribution of NEA cod eggs found that biomass-weighted mean 

170 age and weight were better predictors than other metrics (Stige et al. 2017), and spawner mean 

171 age appears to reflect the major shift in spawner age structure in this population (Appendix S1: 

172 Fig. S1). However, we considered other commonly used metrics of spawner age structure in our 

173 model selection, specifically the proportion of individuals in the oldest age class (+group), the 

174 Shannon index of age diversity, and the proportion of repeat spawners, (Marteinsdottir and 

175 Thorarinsson 1998; Brunel 2010; Barnett et al. 2017). 

176 We calculated an index of the proportion of the oldest fish in the population as the log ratio of 

177 the proportion of individuals in the plus group in any given year relative to the proportion of 

178 individuals in the plus group at the beginning of the time series ( ) (Barnett et al. 2017):𝑃𝐺𝑦

179 , with , (6)𝑃𝐺𝑦 = log ( 𝑝𝑃𝐺𝑦

𝑝𝑃𝐺𝑦 = 1946) 𝑝𝑃𝐺𝑦 =
𝑁𝑎 ≥ 15,𝑦

∑𝑎 = 14
𝑎 = 1 𝑁𝑎,𝑦

180 where  is the proportion of the plus group individuals (ages 15+) in the population.𝑝𝑃𝐺𝑦

181 The Shannon diversity index ( ) was calculated based on the frequency of mature biomass at 𝐷𝐼𝑉𝑦

182 age ( ):𝑓𝑎,𝑦

183 , for . (7)𝐷𝐼𝑉𝑦 = ― ∑
𝑎(𝑓𝑎,𝑦ln(𝑓𝑎,𝑦)) 𝑓𝑎,𝑦 > 0

184 The proportion repeat spawners ( ) was calculated based on the proportions mature in each 𝑃𝑅𝑆𝑦

185 age and year: 

186 . (8)𝑃𝑅𝑆𝑦 =
∑

𝑎(𝑀𝑎 ― 1,𝑦 ― 1/𝑀𝑎,𝑦)𝑆𝑎,𝑦

∑
𝑎𝑆𝑎,𝑦

187 Statistical analyses
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188 Our analysis is based on a Ricker stock-recruitment model (Ricker 1954) to describe the 

189 relationship between spawning stock biomass in year  ( ) and subsequent recruitment ( )  𝑦 𝑆𝑦 𝑅𝑦 + 3

190 three years later. The linearized version is:

191 , (9)ln (𝑅𝑦 + 3

𝑆𝑦 ) = 𝛼 + 𝛽𝑆𝑦 + 𝜖𝑦

192 where  is the intercept,  is the rate at which productivity declines with spawner biomass (𝛼 𝛽

193 ), and  is an error term that was modeled to account for autocorrelation in the residuals:𝛽 ≤ 0 ϵy

194 , (10)𝜖𝑦 = 𝜖𝑦 ― 1𝜑 + 𝜔𝑦

195 where  is the autocorrelation coefficient and  are normal random errors.𝜑 𝜔y~N(0,σ2)

196 The natural logarithm of recruits per spawner biomass was thus used as a metric of population 

197 productivity. To explain variation in population productivity over time beyond the effect of 

198 spawner biomass, we extended this model to incorporate other predictor variables:

199 , (11)ln (𝑅𝑦 + 3

𝑆𝑦 ) = 𝛼 + 𝛽0𝑆𝑦 + 𝛽1𝑋1 +… + 𝛽𝑛𝑋𝑛 + 𝜖𝑦

200 where  are the regression coefficients and  are the covariate time series lagged 𝛽1, …, 𝛽𝑛 𝑋1, …, 𝑋𝑛

201 relative to spawn year when the covariate is hypothesized to affect population productivity via 

202 effects on spawners, eggs, larvae, or pre-recruit juveniles. By using a linearized Ricker model, 

203 we implicitly assume that potential covariate effects are additive on log scale (multiplicative on 

204 arithmetic scale), and we test whether covariates affect population productivity, not whether they 

205 modulate the density dependence between recruitment and spawner biomass.

206 We considered the following continuous predictor variables in addition to total spawner biomass, 

207 which was set as a fixed term in the regression analysis: biomass of age 3-6 cannibals in the year 

208 after spawning (as a proxy of intraspecific predation by preceding cohorts during the pre-recruit 
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209 life-stages), average temperature of the Kola section in the Barents Sea from July through 

210 December, i.e. during the larval and 0-group stages, and one of the age structure metrics: 

211 biomass-weighted mean age or mean weight of spawners, the Shannon index of age diversity, the 

212 proportion of individuals in the plus group, and the proportion of repeat spawners. We did not 

213 include more than one age structure metric in the same model due to high pairwise correlations 

214 among these metrics. We considered other seasonal temperature averages during our preliminary 

215 analysis that were less strongly associated with our response variable. All of the above covariate 

216 time series were available for all years with data on spawner biomass and recruitment (1946-

217 2017), with the exception that the proportion repeat spawners could not be computed for the first 

218 year. A lag of one year post spawning was used for the cannibal biomass covariate because 

219 cannibalism mortality is highest among 1-year old cod (Yaragina et al. 2009). We also tested for 

220 effects of food web interactions, using indices of capelin abundance, biomass of young herring 

221 (ages 1-2), krill abundance, and mesozooplankton abundance, which were not available for all 

222 years. The model selection was run using years with observations for each predictor, and was 

223 extended to include more years as predictors with shorter time series were dropped from the 

224 model. Information on covariates included in the model selection, available data, lags 

225 considered, and potential mechanisms are presented in the Supplementary Material (Appendix 

226 S1: Table S1). We considered non-linear temperature effects by including a quadratic term in 

227 addition to the linear effect, and tested for an interaction effect between temperature and age 

228 structure (Ottersen et al. 2006), by constructing a dummy variable representing ‘high’ and ‘low’ 

229 values. The optimal threshold for splitting the age structure metric into two categories was 

230 determined by testing a range of quantiles (0.2-0.8). 
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231 Model selection was performed using the dredge function of the package MuMIn (v. 1.43.15, 

232 Burnham and Anderson 2002) in R (R Core Team 2020) and was based on Akaike’s Information 

233 Criterion corrected for small sample size (AICc). All variables were centered and standardized to 

234 a mean of zero and a standard deviation of one for the analysis to ensure that main effects are 

235 biologically interpretable in the presence of interactions and that slopes are comparable within 

236 and between models (Schielzeth 2010). We tested for the inclusion of model weights for 

237 explaining the variance structure of the residuals using fixed and exponential functions of the 

238 selected covariates (Zuur et al. 2010). Because we tested a variable threshold effect for the 

239 interaction between temperature and mean age, we penalized the interaction model when 

240 calculating the AICc value by counting the threshold as one additional parameter (Ottersen et al. 

241 2013). We assessed multicollinearity between selected explanatory variables using variance 

242 inflation factors (VIF) (Zuur et al. 2010). 

243 To assess the ability of the models of varying complexity to make out-of-sample predictions, we 

244 performed a model cross validation. The data were randomly split into a training dataset (75% of 

245 data) and a test dataset (25% of data), and all sub-models contained in the selected model with 

246 the lowest AICc value were run on the training data to estimate the model parameters and 

247 subsequently predict the remaining test data. We then calculated the root mean squared 

248 prediction error (RMSE) as our performance metric: 

249 , (12)RMSE =
∑𝑛

1(𝑦 ― 𝑦)2

𝑛

250 where  and  are model-predicted and observed ln(recruits/SSB) in each year, respectively, and 𝑦 𝑦

251  is the number of years. This procedure was repeated 1000 times by randomly drawing the 𝑛

252 training and test datasets from the observations. The median root mean squared prediction errors 
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253 across runs were compared among all sub-models to assess which of the models would produce 

254 the best out-of-sample predictions, i.e. smallest median prediction errors. Code for the statistical 

255 analyses is provided as supporting information (Data S1) and is available online in Zenodo at: 

256 https://doi.org/10.5281/zenodo.5851638.

257 RESULTS

258 Over the past 75 years, spawning stock biomass of NEA cod has varied between 0.1 and 2.64 

259 million tons with an average of 0.62 million tons, and recruitment at age-3 has varied between 

260 0.11 and 2.59 billion recruits with an average of 0.75 billion recruits (Fig. 2). Population 

261 productivity measured as ln(recruits/SSB) has varied considerably over time and was particularly 

262 low during the 2010s when spawning stock biomass was high. 

263 Population age structure was an important predictor of population productivity in NEA cod. 

264 Several of the age structure metrics performed similarly well in terms of AICc and model 

265 predictive ability (Appendix S1: Table S4; Fig. S2), and our model selection showed support for 

266 including the same covariates in models with alternative age structure metrics. In addition to 

267 spawning stock biomass, the final models included the biomass of age 3-6 cannibals, mean 

268 temperature, and one of the age structure metrics:

269 ,ln (𝑅𝑦 + 3

𝑆𝑦 ) = 𝛼 + 𝛽0𝑆𝑦 + 𝛽1𝐴𝑦 + 𝛽2𝐶𝑦 + 1 + 𝛽3𝑇𝑦 + 𝜖𝑦

270 where  is the age structure metric in year ,  is biomass of potential cannibals in the 𝐴𝑦 𝑦 𝐶𝑦 + 1

271 following year, and  is mean environmental temperature in year  from July to December. 𝑇𝑦 𝑦

272 Time series of selected covariates are presented in Fig. 2. Productivity of NEA cod was not 

273 associated with any of the abundance or biomass indices of the interacting species that we 
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274 considered in the model. We did not find evidence for the inclusion of model weights to explain 

275 the variance structure in the data.

276 We found that population productivity was negatively associated with spawning stock biomass 

277 (mature fish age 6 or older) and the biomass of potential cannibals (mostly immature fish ages 3-

278 6), and positively associated with mean temperature and the age structure metrics (Fig. 3). While 

279 spawner mean age performed best in terms of model predictive ability, other age structure 

280 metrics resulted in similar prediction errors and AICc values (Appendix S1: Table S4; Fig. S2). 

281 Specifically, the log ratio of the proportion of old individuals (ages 15+) in the population and 

282 spawner age diversity were similarly good predictors of population productivity (Fig. 3).

283 The AICc-based model selection of covariates resulted in competing models with similar AICc 

284 support (Appendix S1: Table S2). The more complex model included an interaction effect 

285 between temperature and the age structure metric as categorical variable (e.g. spawner mean age 

286 with a threshold at the 0.7 quantile, Appendix S1: Fig. S3). However, the simpler model received 

287 support based on the model cross-validation due to lower root mean squared prediction errors 

288 and was selected as the most parsimonious model (Appendix S1: Fig. S4). Residuals suggested 

289 no violation of assumptions of normality and homoscedasticity and model predictions captured 

290 much of the trends and interannual variability in population productivity (Appendix S1: Fig. S5). 

291 The estimated model coefficients (per unit standard deviation) are provided in Appendix S1: 

292 Table S3. The standard deviation of the normal random error was 0.54, and the autocorrelation 

293 coefficient was 0.47 (mean age model). While spawning stock biomass, metrics of spawner age 

294 structure, and cannibal biomass are intrinsic population metrics, pairwise correlations between 

295 covariates of the fitted models were low (Pearson correlation coefficients <0.4), and a variance 

296 inflation factor analysis of the selected covariates raised no concern of multicollinearity (all 
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297 values <1.2). Inclusion of alternative age structure metrics did not appreciably alter the estimated 

298 coefficients for spawning stock biomass, biomass of cannibals, and mean temperature (Fig. 3).  

299 The selected models were used to predict ln(recruits/SBB) as a function of spawning stock 

300 biomass for different values of the age structure metrics while setting other covariates (cannibal 

301 biomass and temperature) to median values. We used the 2.5th and 97.5th percentiles of spawner 

302 mean age, log ratio of the proportion plus group, and the spawner age diversity index that have 

303 been observed over the past 75 years. The predictions illustrated the large effect that spawner age 

304 structure has on expected recruits per spawning stock biomass (Fig. 3). For example, the ratio of 

305 model-predicted recruits/SBB at the highest compared to the lowest mean age was 3.04. A 

306 spawning stock with a mean age of about 11 years is expected to produce three times as many 

307 recruits per unit spawner biomass compared to a spawning stock with a mean age of about 7 

308 years. We further found that the effects of spawner age structure were slightly weaker when the 

309 biomass of age 3-6 cod was not included in the model. Dropping cannibal biomass from the 

310 model resulted in smaller effect sizes of spawner age structure, and reduced model predictive 

311 ability (Appendix S1: Fig. S4, Fig. S6).

312 DISCUSSION

313 We find evidence that the mean age of spawners, or alternatively age diversity or the proportion 

314 of old individuals in the population, has a positive effect on population productivity, measured as 

315 recruits per spawning stock biomass. Our results suggests a three-fold difference in population 

316 productivity between the lowest and highest mean ages of spawners that have been observed 

317 over the past 75 years. In addition, we find evidence that the biomass of potential cannibals 

318 negatively affects population productivity, and that increasing temperatures have a positive effect 

319 on the productivity of this high-latitude cod population. 
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320 Previous work has evaluated the effect of spawner age structure on cod population recruitment. 

321 Ottersen (2008) analyzed data on NEA cod and found no clear link between the mean age of 

322 spawners and subsequent recruitment. Brunel (2010) studied multiple stocks of Atlantic cod and 

323 found that the effects of spawner mean age and age diversity on recruitment were positive but 

324 non-significant for most cod stocks, including NEA cod. Shelton et al. (2015) used stock-recruit 

325 relationships that included maternal age structure to model the recruitment of several stocks of 

326 Atlantic cod and found that in many stocks a model with a maternal age effect was preferred, 

327 though they reported a relatively weak effect for NEA cod. However, these studies did not 

328 account for potential cannibalism of pre-recruits by older juveniles that have recruited to the 

329 fishery but are not part of the spawning stock. Because NEA cod rarely mature before age 6, and 

330 predation by 3-6 year-olds accounts for most of the cannibalism mortality among pre-recruits 

331 (Bogstad et al. 1994; Yaragina et al. 2009), the majority of potential cannibals are not part of the 

332 spawning stock. We therefore included cannibal biomass as an additional variable in our model. 

333 Ignoring this component of intrinsic population regulation likely affects inferences about other 

334 factors affecting productivity, especially because cannibalism in NEA cod appears to be more 

335 pronounced than in other stocks (Holt et al. 2019). This is in line with our finding that the effect 

336 of spawner age structure was weaker when the biomass of age 3-6 cod was not included in the 

337 model. It should be noted that our analysis relies on data from a stock-assessment model that are 

338 assumed to represent true values. The NEA stock assessment model considers cannibalism 

339 mortality, in addition to a fixed natural mortality, and the underlying estimation of consumption 

340 of cod by cod based on stomach content data is uncertain and affected by temperature (ICES 

341 2020). This might introduce bias into our model estimates, in particular the cannibalism effect. 
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342 The higher recruitment success per unit spawner biomass of an older and more age diverse 

343 spawning stock is in part caused by an increase in mass-specific reproductive investment with 

344 female body size. Hyperallometric scaling of reproductive output is commonly observed in 

345 marine fishes, including Atlantic cod (Barneche et al. 2018), and interannual variation in relative 

346 fecundity is associated with variation in the size composition of the spawning stock in NEA cod 

347 (Marshall et al. 2006). While the approach applied here does not allow us to quantify the 

348 contributions of different mechanisms, our findings suggest that other factors linked to maternal 

349 effects contribute to increased population productivity of an older spawning stock, because 

350 productivity was more strongly linked to the mean age of spawners than the mean weight of 

351 spawners. Maternal effects may arise from various mechanisms, including differences between 

352 young and old spawners in the duration of spawning, frequency of skipped spawning, and factors 

353 such as larger eggs that can result in higher offspring survival (Solemdal et al. 1995; Kjesbu et 

354 al. 1996; Nissling et al. 1998; Vallin and Nissling 2000; Jørgensen et al. 2006). Other 

355 mechanisms appear to be less important, for instance, a broader spatial distribution of eggs has 

356 little effect on recruitment in NEA cod (Stige et al. 2017; Langangen and Stige 2021). 

357 We found a positive but relatively weak link between NEA cod productivity and temperature, as 

358 reported previously (Ottersen and Loeng 2000; Stige et al. 2010; Ohlberger et al. 2014). Higher 

359 temperatures likely increase growth and survival during early life-stages. Impacts of warming 

360 may also differ between life-stages (Peck et al. 2009), and manifest though various mechanisms, 

361 including changes in the abundance and distribution of predators and prey (Ohlberger 2013; 

362 Ottersen et al. 2014). In NEA cod, higher temperatures also appear to be linked to spawning at 

363 higher latitudes (Sundby and Nakken 2008; Langangen et al. 2019; but see Opdal and Jørgensen 

364 2015). Importantly, climate warming can affect populations of the same species differently. The 
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365 relationship between environmental temperature and recruitment of Atlantic cod varies by 

366 population, with positive effects at higher latitudes and negative effects at lower latitudes 

367 (Drinkwater 2005). Interestingly, we found similar support for a model that included an 

368 interaction between temperature and age structure (as a categorical variable), which suggested a 

369 positive temperature effect at low mean age, age diversity or proportion plus group, but no effect 

370 at high values. While that model was not selected as the most parsimonious due to its lower 

371 predictive performance, such an interaction would be consistent with previous work that 

372 suggested a strengthening of the climate-recruitment link during the second half of the 20th 

373 century (Ottersen et al. 2006).

374 The reduction in population productivity associated with shifting spawner age structure is of 

375 particular importance because fisheries increase mortality and often selectively remove large 

376 individuals from the spawning populations. Fishing commonly leads to population age structures 

377 shifting towards younger and smaller fish (Anderson et al. 2008; Sharpe and Hendry 2009) and 

378 may result in evolutionary changes toward earlier maturation (Kuparinen and Merilä 2007; 

379 Heino et al. 2015). While evidence exists that changes in the age structure of NEA cod largely 

380 occurred in response to exploitation (Ottersen 2008; Eikeset et al. 2016), it is conceivable that 

381 increasing temperatures contribute to reduced mean age of spawners via effects on growth and 

382 maturation (Forster et al. 2012; Baudron et al. 2014; Huss et al. 2019). Our results thus suggest 

383 that intense capture fisheries can affect the productivity of the populations they depend on, not 

384 only via changes of total spawner abundance, but also by altering the age structure of the 

385 spawning stock. Changes related to species life-histories, such as shifting spawner age structures, 

386 are increasingly recognized to impact population recruitment (Shelton et al. 2015). Our study 

387 shows that age structure can have significant impacts on fish stock productivity, which in turn 
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388 might affect the long-term sustainable yield of commercial fisheries and the livelihoods that 

389 depend on these fisheries. A model including spawner mean age had a slightly better predictive 

390 ability compared to models including alternative age structure metrics in our study. While mean 

391 age has been criticized as a poor descriptor of the age composition of a population and is difficult 

392 to link to individual-level traits (Shelton et al . 2015), spawner mean age appears to capture the 

393 shift in age composition of the NEA cod spawning stock (Appendix S1: Fig. S1), likely because 

394 these shifts are associated with changes in age at first maturation. Alternative metrics such as the 

395 proportion of old individuals in the population may be better suited to reflect age structure 

396 changes in other exploited populations, for example those that have not experienced long-term 

397 changes in maturation schedules.

398 Our findings highlight the potential of preserving spawner age structure as a tool to sustaining 

399 population productivity. Shifting age structures of fish populations can also cause increased 

400 variability in abundance and reduced population resilience (Anderson et al. 2008; Hsieh et al. 

401 2010; Shelton and Mangel 2011). Incorporating demographic information into the fishery 

402 management process could help preserve an older and more diverse age structure and thereby 

403 facilitate fisheries sustainability. Whether the best approach to preserving spawner age structure 

404 is via size or weight limits, spatial fishery closures, or reduced fishing mortality, likely depends 

405 on the ecology of the exploited population as well as fishing methods and current management 

406 practices (Berkeley et al. 2004; Kjesbu et al. 2014; Ahrens et al. 2020). For instance, the NEA 

407 cod fishery is currently managed via a harvest control rule that is used to set the total allowable 

408 catch each year based on reference points for spawning stock biomass and fishing mortality. This 

409 rule was designed to ensure that the stock is harvested sustainably (ICES 2009; Eikeset et al. 

410 2013), and its implementation in the mid-2000s appears to have contributed to increased spawner 
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411 biomass and mean age (Kjesbu et al. 2014; Fig. 1). In addition to biomass or fishing mortality 

412 limits, harvest control rules could adopt reference points based on the demographic status of a 

413 population to further ensure that population reproductive capacity is maintained.
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621 FIGURE CAPTIONS

622 Fig. 1: Map showing the spawning locations and general distribution of NEA cod. Juvenile 

623 and adult NEA cod are mostly distributed in the Barents Sea (shaded area). The fish perform 

624 annual migrations to the spawning grounds (dark gray) along the Norwegian coast. Also 

625 indicated is the Kola section (station 3-7) in the Barents Sea (thick black line). 

626 Fig. 2: Time series data. Shown are (a) spawning stock biomass (SSB, million tons) and 

627 recruitment (billions), (b) biomass of age 3-6 cod that are considered cannibals on pre-recruits, 

628 (c) temperature of the Kola section in the Barents Sea (red and blue indicate temperatures above 

629 and below the long-term average of 4.8°C, respectively), and (d) three age structure metrics: 

630 biomass-weighted mean age of the spawning stock (blue), the log ratio of the proportion of old 

631 individuals (age 15+) in the population (green), and the Shannon index of spawner age diversity 

632 (orange).

633 Fig. 3: Estimated covariate effects and spawner-recruit predictions for models including 

634 alternative age structure metrics. Shown are standardized effect size estimates of all covariates 

635 in the three alternative models, including total spawner biomass, biomass of age 3-6 cannibals, 

636 mean temperature, and the age structure metric, where lines are 95% confidence intervals (a-c), 

637 partial effects on ln(recruits/SSB) of the age structure metrics, where shaded polygons are 95% 

638 confidence intervals (d-f), and predicted relationships between spawning stock biomass (million 

639 tons) and recruitment (billions) for the alternative age structure metrics (g-i). Predictions were 

640 made for two different values of the respective age structure metric, taken as the 2.5th and 97.5th 

641 percentiles, and assuming median values for the other predictors in the model (biomass of age 3-

642 6 cod and mean temperature). Thin dashed lines represent two times the standard error of the 

643 predictions.
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