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An important part of infectious disease management is predicting factors
that influence disease outbreaks, such as R, the number of secondary infec-
tions arising from an infected individual. Estimating R is particularly
challenging for environmentally transmitted pathogens given time lags
between cases and subsequent infections. Here, we calculated R for Bacillus
anthracis infections arising from anthrax carcass sites in Etosha National
Park, Namibia. Combining host behavioural data, pathogen concentrations
and simulation models, we show that R is spatially and temporally variable,
driven by spore concentrations at death, host visitation rates and early pre-
ference for foraging at infectious sites. While spores were detected up to a
decade after death, most secondary infections occurred within 2 years.
Transmission simulations under scenarios combining site infectiousness
and host exposure risk under different environmental conditions led to
dramatically different outbreak dynamics, from pathogen extinction (R < 1)
to explosive outbreaks (R > 10). These transmission heterogeneities may
explain variation in anthrax outbreak dynamics observed globally, and
more generally, the critical importance of environmental variation under-
lying host–pathogen interactions. Notably, our approach allowed us to
estimate the lethal dose of a highly virulent pathogen non-invasively from
observational studies and epidemiological data, useful when experiments
on wildlife are undesirable or impractical.
1. Introduction
Environmentally transmitted pathogens (ETPs) represent a large proportion of
the most burdensome infectious disease agents globally [1]. Understanding
their epidemiology often proves very challenging as they are difficult to
detect, and for some, the environmental reservoirs are still poorly known [2,3].
Persistence in the environment is highly dependent on the traits of the pathogen
and the characteristics of the environment. Brucella abortus bacteria can persist
20–80 days [4], Toxoplasma gondii oocytes can survive for months [5], and the
prion responsible for scrapie can survive for at least 16 years [6]. Persistent
pathogens in the environment can extend existing outbreaks or initiate ‘new’
outbreaks years into the future. For example, avian influenza outbreaks
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emerge in North America every 2–4 years, with emergence
sparked by ingestion of virions from environmental reservoirs
established in previous outbreaks [7,8]. Here, we estimate
the number of secondary infections arising from pathogen
reservoirs for a highly persistent ETP and how environ-
mental variation affecting pathogen survival and host
behaviours alters host–pathogen contact rates and, ultimately,
transmission.

For directly transmitted pathogens, the basic reproduction
number R0 is an estimate of the average number of secondary
cases produced from a single infectious individual introduced
into a susceptible population and is often used as a key epide-
miological parameter [9]. However, the assumption of a naive
population is not met for diseases in endemic areas, and
estimating R0 for ETPs is arduous due to the extended infec-
tious time in the environment, variation in the spatial extent
of pathogen reservoirs, and heterogeneity in host movement,
behaviour and susceptibility [10,11]. In cases where ETPs are
only released into the environment at host death (i.e. obligate
killer pathogens [12]), one host mortality will form one infec-
tious reservoir ‘patch’ in the environment. We can assess the
reproduction numberR, which does not assume a naive popu-
lation, defined here for ETPs as the average number of
secondary infections produced by one infectious patch over
its infectious period. This novel formulation of the reproduc-
tion number acknowledges that the population may not be
entirely susceptible, without needing to know the susceptible
proportion of the population to calculate the effective repro-
duction number Re. For persistent ETPs, patches can remain
infectious spanning multiple, seemingly independent,
outbreak events and monitoring of pathogen reservoirs is
thus needed to identify how pathogen concentrations affect
transmission risk over time [13].

In addition to pathogen persistence, information on host
movement and behaviour is essential to identify contacts
with pathogen reservoirs in heterogeneous landscapes that
vary in exposure risk. Movement ecology studies of host
locations can be combined with pathogen location data
to estimate host–pathogen contact rates [14,15]. However,
the temporal scales of host telemetry studies are often
too coarse to determine an encounter with infectious patches
present at a fine spatial extent. Fine-scale behavioural
information like direct observation is needed to identify con-
tacts with infectious patches in heterogeneous environments.
For terrestrial vertebrates, the infectious sites often represent
a small part of the host range, such as a water source or
specific pasture sites [16,17], depending on how and where
pathogens are released from hosts. Thus, reservoir-focused
sampling techniques to monitor host behaviours and trans-
mission risk can fill a gap in our understanding of
transmission for ETPs.

Hosts may modulate their behaviour based on cues
suggesting the presence of infectious patches. Exposure
may be reduced if hosts avoid detectable cues associated
with infection risk such as faeces, carcasses or macroparasites
[18], a response now called the ‘landscape of disgust’ [19,20].
Conversely, exposure risk can be enhanced by attraction
toward contaminated water or nutrient-rich foraging sites,
leading to ingestion of pathogens with forage or water
[16,21]. Because behaviour can depend on the state of the
reservoir site, quantifying host–environment contact is crucial
to assess disease transmission potential at heterogeneous
environmental reservoirs.
Bacillus anthracis is a bacterial pathogenwith two life forms;
infectious spores that are maintained in the environment, and
vegetative cells thatmultiply and cause disease insidemamma-
lian hosts [22]. Spores at carcass sites can be found on grasses
for several years [21] and in exposed surface soils for up to a
decade [23]. A new case occurs when a host ingests spores
while grazing at a carcass site [21,24], if the exposure exceeds
the lethal dose threshold [25,26]. If exposed to a lethal dose,
the host will die within a few days, and the site of death
becomes a new infectious patch in the soil (an area less than
20 m2 [21]). For B. anthracis, estimating R is made conceptually
tractable with this ETP being an obligate killer, where one host
fatality generates one infectious patch that can then cause sec-
ondary infections. We aimed to estimate R for B. anthracis,
incorporating variation in the three sides of the epidemiologi-
cal triangle: host, pathogen and environment. We assessed
host individual and population-level attraction to infectious
sites using camera traps at anthrax carcass sites and paired con-
trols sites, and quantified foraging behaviour of two host
species, plains zebra (Equus quagga, hereafter zebra) and blue
wildebeest (Connochaetes taurinus, hereafter wildebeest). We
then estimated pathogen concentrations on soil and grasses
at reservoir sites over a decade using interpolation and extra-
polation from empirical datasets on soil and grass spore
concentrations. Finally, we developed a simulation model
to determine the exposure risk of the two host species to
B. anthracis by estimating R, defined as the number of individ-
uals a single anthrax infectious site may infect over its decadal
lifespan. Knowing R and its duration for ETPs may inform
wildlife disease management decisions, such as assessing
spatial overlap with appropriate time lags at the interface
between livestock and wildlife.
2. Material and methods
(a) Study area
Etosha National Park (hereafter Etosha) is a 22 270 km2 nature
reserve in northern Namibia containing a large salt pan
surrounded by grasslands, shrublands and woodlands [27].
Etosha encompasses a sub-tropical, semi-arid savannah biome
with a single wet season (January–April) and a long dry season
(cool dry season, May–August and hot dry season, September–
December). In Etosha, anthrax occurs mainly during wet seasons,
through ingestion of spores by grazing herbivores [28–30]. The two
main host species are plains zebra and blue wildebeest which rep-
resent 50.3%, and 16.2% of all confirmed anthrax cases recorded
1968–2020, respectively (2150 anthrax cases among all hosts;
Etosha Ecological Institute; all data from this institute were com-
municated by Claudine Cloete in 2023). The population density
of zebras is more than six times higher than wildebeests (estimate
of 16 174 zebras and 2482 wildebeests [21]), and population
estimates of both species have been fairly stable over the last
30 years [27]. Additional information about heterogeneities in
anthrax dynamics within this study area is available [23,24,31].

(b) Camera site data collection
Motion-sensing remote camera traps were used to collect animal
behavioural data at carcass sites (study design and camera
placement described in [21]). In brief, 13 rock-delimited 2.5 m
radius zones at anthrax carcass sites (from 12 zebras and one
wildebeest) paired with 13 control sites situated 100 m away
were monitored between March 2010 and March 2013, totalling
14 779 days of observation (electronic supplementary material,
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figure S1). The sites were situated within the same habitat, thus,
we assumed that visitation would not differ between the carcass
and control sites. Motion-triggered cameras took 10 pictures at
1 s intervals continuously when movement was detected.
Vegetation greenness for each site pair was obtained from the
normalized difference vegetation index (NDVI) at a resolution
of 250 m2 every 8 days (Global Inventory Modeling and
Mapping Studies [32]).

Site visitation was recorded from photographs when animals
entered the rock-delimited zones. The information recorded
included date, time, species, age ( juvenile: less than 1-year-old;
sub-adult: 1–2 years old; adult: greater than 2 years old), sex,
total time spent on site and time spent grazing in seconds. Age,
sex, location in the image and coat patterns (electronic supple-
mentary material, SI.1) were used to ensure whether the same
individual was assessed across triggers proximate in time, defined
as a gap of a fewminutes. Depending on the position of the animal
and the lighting of the image, age and sex could not always be
determined, so the confidence of age/sex observations was
ranked from 0 (impossible to identify) to 3 (certain), with confi-
dence scores of 0 and 1 removed from relevant analyses. Two
observers manually coded host demographics from images (C.C.
and A.C.D.).

(c) Host parameter analysis
We assessed the attractiveness of carcass sites to zebra and wilde-
beest from camera trap data, defining three behavioural response
variables for both species, for each site: (i) monthly average
number of visitations, (ii) monthly average probability of grazing
given visitation and (iii) time spent grazing given grazing occurred
(electronic supplementarymaterial, SI.2).We investigated how the
treatment (carcass or control), the number of months after death
(MAD), environmental factors (NDVI and season), demographic
variables (age and sex), and spatial variables (distance to the clo-
sest perennial water and distance to an edge of the main Etosha
salt pan; electronic supplementary material, table S1) affected
each of the three behavioural response variables, using generalized
linear models. All analyses and models were conducted using the
R software [33], with packages lme4 [34], and glmmTMB [35].
Only months with at least 20 days of recording for both cameras
at a site (carcass and control) were included in the analysis. Out
of the 546 individual camera-months sampled, 438 met this
inclusion criterion. For included months with missing data, these
had an average of 2.5 days missing (electronic supplementary
material, SI.2, figure S2). The monthly visitation was analysed
using a zero-truncated negative-binomial model, the proportion
of monthly grazing events was analysed using a binomial
model, and the time spent grazing using a log-transformed
linear mixed model. Interactions between season and distance to
water, as well as between treatment and MAD were included. In
each model, we kept treatment, age and sex as fixed effects and
site ID as a random factor. Model selection was made using the
Akaike Information Criterion. For each response variable, 16
models were tested (electronic supplementary material, table S2),
totalling 48 models per species.

(d) Pathogen parameter estimation
Pathogen concentrations on grasses and soil, measured as
colony-forming units (CFUs) per gram of dry matter, were
obtained at zebra anthrax carcass sites (sampling method and
data in [21] and [23]). Concentrations of spores on grasses were
recorded at 23 sites up to 4 years after death. Two measurements
were obtained from grasses, the concentration of pathogen on the
aboveground material (i.e. everything above the roots), or in the
upper portion of the aboveground material (the aboveground
component after removal of 1 cm at the base of the plant
which can collect soil; this upper grass portion is hereafter
referred to as the ‘grass’ component ingested in simulations).
Soil spore concentrations were recorded for up to 12 years at
40 carcass sites, but no spores were detected after 10 years [23].

To obtain estimates of spore concentrations on grasses and in
soil over the full time series, we interpolated the soil CFU for all
missing values (156 out of 442) at the 40 sites using the log-linear
model from Barandongo et al. [23], with site age as a predictor.
Then, we extrapolated the concentration of spores on grasses
for all 40 sites over 10 years using two steps. We first fit a log-
linear model using the soil CFU and age of sites to obtain the
concentration of spores on the aboveground grass components:

log10ðCFUaboveground,z,t þ 1Þ ¼ log10ðCFUsoil,z,t þ 1Þ þ b

�Agez þ 1z,t, ð2:1Þ
where β is the regression coefficient, ε is the error at site z and
time after death t. Then, we extrapolated the expected values
of CFU on the grass tops, using a log-linear model based on
the aboveground CFU only.

(e) Reproduction number estimation: infection risk
simulation model

We estimated the reproduction number, R, as the number of
lethal infections occurring at an infectious site over a decade by
simulating host exposure to the pathogen. To simulate host be-
haviour, we drew the number of animals visiting an infectious
patch, the probability of grazing, and grazing time from empiri-
cal probability density functions (PDFs). Then, to simulate
individual host–pathogen exposure we estimated the quantity
of spores ingested based on time spent grazing and seasonal pat-
terns of soil ingestion [30]. We only considered an exposure to be
an infection if the number of spores ingested, at one visitation,
exceeded a fixed lethal dose; we did not consider multiple
exposures. The estimated B. anthracis lethal dose by ingestion is
between 105 and 108 spores [26], so we considered four threshold
doses (105, 106, 107 and 108) to estimate which threshold matched
the anthrax dynamic observed. Each model iteration simulated
each season of each post-death year 0–10. A visual representation
of the model is presented in figure 1. We ran each simulation 100
times to account for stochasticity.

The host empirical PDFs were built using the 3-year period of
camera trap data and were subdivided using the significant vari-
ables obtained from the statistical analyses, mainly season, year
after death and distance to water or salt pan (see main text
result; electronic supplementary material, SI.3, figures S3–S8).
Using a subdivided dataset allowed us to consider how host vis-
itation and behaviours vary under a range of environmental
conditions. We used PDFs rather than model predictions as we
wanted to draw values from a distribution which encompasses
the extreme values present in the data, better representing the
stochasticity present in the system. From the statistical analysis,
carcass sites influenced host visitations and grazing during the
first 24 months, after which carcass and control sites did not
differ. We assumed that behaviours at control sites, and at
older carcass sites (i.e. greater than 2 years old, after the attraction
signal has faded), were plausible estimates for visitation rates
and behaviours at older carcass sites (i.e. 2–10 years in the simu-
lation). To account for this temporal signal in host behaviour, we
separated the datasets into three time periods: year 0, year 1 and
years 2–10. To estimate host parameters for years 0 and 1, we
used data from carcass sites for years 0 and 1 after death, respect-
ively. For host parameters in years 2–10, we pooled data from
control sites and for carcass sites over 2 years old.

Individual pathogen exposure was simulated by estimating
the amount of forage ingested, then calculating the associated
spore intake using empirical data. The number of grams
ingested, ngrami, by individual i, is

ngrami ¼ Ti � Bns � Bws, ð2:2Þ
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where Ti is the time spent grazing by individual i, Bns is the
number of bites per second and Bws is the weight of a bite for
species s. Foraging zebras take bites of about two grams and
an average of 27 bites min−1 [36,37] while wildebeest take bites
averaging 1 g bite−1 and 26 bites min−1 [38,39]. To estimate the
number of spores ingested by each individual, we randomly
selected one of the 40 carcass sites for which we have spore con-
centrations as the site of foraging. Because zebra and wildebeest
ingest not just grass, but also soil and roots when grazing [40,41],
and because spore concentrations are higher in soil/roots than on
grasses [21], we modelled the ingested spore concentration as a
mix of grass and soil ingestion. The quantity of soil ingested
while grazing at infectious patches is unknown, however,
we expect hosts primarily consume grass when grazing. We
assume that if soil was ingested, it would represent 10% of
intake mass [26]. To denote this, we included a parameter β
representing the portion of soil ingested per bite (β = 0.1 if soil
ingestion occurs, β = 0 otherwise). For each gram ingested, we
treated the concentration of spores in the grass and in the soil
as a Poisson process (to counterbalance errors that arise from
extrapolation without accounting for variance in this step, as in
[26]), and we assumed that the concentration of pathogen at
the site is not modified by grazing. Thus, we calculate the
number of spores ingested, Di,z,t, by individual i, at infectious
site z, of age t as

Di,z,t ¼
Xngrami

n¼1

((1� b) Pois[CFUgrass,z,t]þ b Pois[CFUsoil,z,t]),

ð2:3Þ

where ngrami is the number of grams of food ingested, β is the
proportion of soil ingested and CFUz,t is the number of spores
ingested from grass and soil components. Because herbivores
ingest soil more often during the wet season than the dry
season [30], we included a weight ωwet and ωdry representing
seasonal differences in the proportion of individuals that ingest
soil while grazing, while others ingest grass only. We tested all
combinations with ωwet and ωdry varying from 0 to 1, by 0.1
increments. For example, a simulation with the proportion
ωwet = 0.4 and ωdry = 0 would simulate that 40% of grazing indi-
viduals ingest grass and soil while 60% ingest grass only
during the wet season, and all grazing individuals ingest only
grass during the dry season. Based on host foraging ecology
[29,30], we assumed that the most likely parameter space for
Etosha is within 0–40% of individuals ingesting soil when graz-
ing, with a higher percentage during the wet versus dry season.

To further explore the role of environmental variability on R,
we repeated simulations considering seasonality in the timing of
reservoir formation and interannual variation in host foraging
behaviour. The concentration of spores in soil reservoirs is over
an order of magnitude lower when individuals die in dry sea-
sons versus wet seasons [23]. Thus, to understand how the
season of death impacts secondary infections, we separated
infectious sites formed in dry seasons (five sites) from infectious
sites formed in wet seasons (35 sites). Similarly, to explore inter-
annual variation in R, we simulated the wet season under
drought conditions using dry season behavioural data and
under average rainfall conditions using wet season behavioural
data. The camera trap data were collected during average to
above-average rainfall years, however, in Etosha, zebras are less
at risk of anthrax during drought due to changing habitat
selection reducing exposure risk [31]. Under drought conditions,
‘wet season’ habitat use mirrors habitat use observed in dry sea-
sons. With these changes, we considered five different data
combination: (i) all data from hosts and infectious sites; (ii) all
data from hosts and wet season formed infectious sites, (iii) all
data from hosts and dry season formed infectious sites,
(iv) data from hot dry host behaviour and wet season formed
infectious sites and (v) data from hot dry host behaviour and
dry season formed infectious sites.

Finally, to investigate which lethal dose threshold best-
represented anthrax dynamics in the system, we simulated
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the number of cases that would be produced over 100 years,
using infection model results combining zebra and wildebeest.
We initialized the simulation using zebra and wildebeest anthrax
mortality data from 2003 to 2013, representing 235 cases (Etosha
Ecological Institute). For each time step, we obtained the number
of yearly new cases by drawing the number of new infections
occurring at each of the 235 sites from the infection model
result, discriminating the sites by age. A maximum of 10 000
new infections per year was fixed, as it represents the average
population of zebra and wildebeest present in Etosha (Etosha
Ecological Institute). We used the model combination using all
host and infectious sites to simulate this prediction. This is a
simple model, used to inform where the lethal dose threshold
might fall in free-ranging wildlife populations.
3. Results
(a) Host parameters
Of 119 226 triggers of the camera traps, 5196 contained zebras
and 1043 contained wildebeests. Based on sequential triggers
clustered in time, we identified visitations by 3838 zebras
and 830 wildebeests. At visits to carcass sites, 37.2% of zebras
grazed and 60.3% of wildebeests grazed, while at visits to con-
trol sites only 24.6% of zebras and 42.0% ofwildebeests grazed.
For both species, most recorded individualswere adult females
(figure 2a,b; all statistical results in electronic supplementary
material, SI.4). Among zebras, more individuals were recorded
on sites closer to permanent water (p < 0.05), during the hot
dry season ( p < 0.0001) and at control sites (p < 0.05,
figure 2a). For wildebeests, sites nearer the salt pan (p < 0.01)
as well as carcass sites ( p = 0.01) had more visitations
(figure 2b).

Despite small visitation differences at carcass and control
sites, the probability of grazing was significantly higher at
carcass sites for both species ( p < 0.0001; figure 2a,b). In
addition, for zebra, the probability of grazing was higher
for females ( p < 0.0001), adults ( p < 0.05), during the cool
dry season ( p < 0.05) and under higher NDVI ( p < 0.0001).
The probability of grazing at carcass sites significantly
decreased the older the site ( p < 0.001). Wildebeest grazing
was similarly affected by NDVI ( p < 0.05), and sites farther
from permanent water significantly increased the probability
of grazing during the dry season ( p < 0.05).

Finally, given that grazing occurred, the time spent grazing
for both species did not differ between site treatments. How-
ever, season played a major role in foraging time. Zebra
grazed for longer times during both dry seasons (p < 0.001)
than the wet season, while wildebeest spent longer times
grazing during the cool dry season ( p < 0.0001; figure 2c,d).

(b) Pathogen estimation
For the 40 monitored carcass sites, we obtained a yearly
concentration of spores per gram of soil or grass. For the
soil pathogen concentrations, 35% of the data came from
the model interpolation, while all the data presented for the
grass tops came from the extrapolation. The concentration
of spores on grasses was much lower than in soil, starting
nearly three orders of magnitude lower (figure 3). Our data
suggest that after 5 years, spores are absent from the grass,
despite persisting in the soil.
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(c) R estimation
Across models, zebra had more anthrax infections than wild-
ebeest, matching patterns observed in disease surveillance
data. Since otherwise both species showed similar trends,
we only show zebra results, and report wildebeest in elec-
tronic supplementary material. There was variability in R
estimation due to the high heterogeneity in visitations, the
proportion of individuals ingesting soil while grazing, and
the lethal dose threshold considered (figure 4; electronic sup-
plementary material, figures S9–S11). From our simulations,
the lethal dose threshold most likely to match the dynamics
observed in Etosha is between 107 and 108 spores for both
species. Indeed, for a lethal dose threshold of 105, 106 and
107, the estimated R, for our parameter space, is above two
and we predict an exponential increase in anthrax cases
over time, while, for a lethal dose of 108, R is below one
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and we simulated pathogen extinction occurring after
70 years, on average (figure 5). If the lethal dose falls between
107 and 108 spores, extrapolating from our models, a host
would need to ingest between 687 and 6878 g of grass only,
or between 1.5 and 14.8 g of grass with soil (when soil is
10% of intake biomass) to become infected at a newly infec-
tious site. The former is unlikely to occur based on site size
and host behaviour, emphasizing the critical importance of
soil ingestion for transmission risk.

Seasonality played a pivotal role in anthrax epidemiology
and infectious site heterogeneity. In general, a larger pro-
portion of individuals ingesting soil led to more infections,
but the magnitude of this effect varied seasonally. For
the same proportion of individuals ingesting soil during the
dry or the wet season, more infections occurred during
the dry season, possibly due to seasonal behavioural
differences, with longer grazing times recorded during the
dry season (compare R above versus below the diagonals,
figure 4b; electronic supplementary material, figure S11b).
Infectious sites formed in the wet season drove disease
dynamics in this system (figure 4c,e; electronic supplementary
material, figure S11c,e); and dry season formed infectious
patches contributed no cases (all R = 0, figure 4d,f; electronic
supplementary material, figure S11d,f), probably due to the
lower spore concentrations found at dry season formed
sites. Similarly, seasonality in host visitation rates played an
important role in the number of individuals infected, with
fewer infections during drought conditions (figure 4e;
electronic supplementary material, figure S11e) than average
rainfall conditions (figure 4c; electronic supplementary
material, figure S11c), probably due to fewer visits and
grazing events.
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The risk of infection diminished rapidly with site age
(figure 6; electronic supplementary material, figure S12). If
individuals only consumed grass, no infections were pre-
dicted after 3 years regardless of the lethal dose threshold
or host species (electronic supplementary material, figures
S13 and S14). However, when at least some individuals
ingested soil when grazing, infections continued for longer.
The higher the proportion of individuals ingesting soil, the
higher the number of infections, occurring over a longer
time since death. For a lethal dose threshold of 105, infections
occurred throughout the 10 years of simulation, while for
thresholds of 106, 107 and 108, no infections were recorded
after years 9, 5 and 4, respectively.
Proc.R.Soc.B
291:20232568
4. Discussion
Determining fine-scale transmission dynamics for ETPs can
be complex due to the difficulties in characterizing contact
locations, reservoir infectiousness and frequency of inter-
actions in heterogeneous environments. This study used
simulation models combining long-term monitoring data of
a pathogen in its environmental reservoir with fine-scale
host behavioural data to estimate the number of secondary
infections arising from infectious patches of an ETP. Together
with knowledge of the long-term epidemiology of this
system, this method has allowed us to evaluate variation in
the number of secondary infections, R, arising from heteroge-
neities along the three sides of the epidemiological triangle
(host, pathogen and environment). Our results suggest eco-
logical mechanisms for why anthrax disease dynamics and
seasonality can vary so dramatically in different ecosystems
and offers a perspective on how ETP heterogeneities alter
outbreak dynamics.

Investigating host individual behaviours at infectious
reservoir sites revealed how fine-scale behavioural variation
scales up to altered disease dynamics. Both host species
had similar visitation rates between site treatments (at times
even higher for zebra at control sites) and the time spent
grazing did not differ between site treatments by age or
sex. The critical difference in behaviour was that, over the
study period, a higher proportion of animals chose to graze
when encountering a carcass site: zebra by 1.5 times and
wildebeest by 1.4 times. Notably, individuals were most
likely to graze at infectious sites within 2 years after creation,
when higher pathogen concentrations are more likely to
result in a fatal exposure. This pattern goes against what
would be expected under the landscape of disgust theory
[19], as we see an increase in risky behaviour at infectious
sites. Carcasses are known to enhance the nutrient content
and palatability of the grasses at the site of death [42,43],
and B. anthracis spores may further promote plant growth
[44], increasing the chances of spores being ingested by a
potential host. However, when focusing on the seasonality
of anthrax infections, visitations and grazing probabilities
were often higher during dry seasons than the wet season,
suggesting a higher risk of infection during the dry seasons,
contrary to what we observe in the system. The key difference
in risk between seasons thus arises from soil contact, since
herbivores ingest significantly more soil in wet than dry sea-
sons [30]. Bacillus anthracis being a soil-borne pathogen, the
quantity of soil a host ingests when grazing is a major com-
ponent of transmission risk. Thus, one limit of our model
comes from uncertainty in our estimate of the amount of
soil ingested during foraging at an infectious patch (β par-
ameter of equation (2.3)). While the quantity will vary
depending on host and environmental factors, our estimate
for this parameter was based on the faecal analysis from
Turner et al. [30] and does not account for seasonal differences
in forage digestibility. However, by varying the proportion of
individuals ingesting soil, we explore the effect of spore
exposure from soil in addition to spore exposure from grasses
on R, and how this varies in different seasons. A finer assess-
ment of the proportion of individuals ingesting soil at
reservoir patches, the quantity of soil ingested, and the
impact of seasonality on those variables across ecosystems
would be important to increase our understanding of the
disease transmission risk.

At the host population level, these behavioural patterns
demonstrate two important findings. First, high variation in
visitation rates suggests that encounters with infectious
patches occur somewhat randomly at a local scale. Forage
choice at the smallest spatial and temporal scales is an impor-
tant driver of pathogen exposure; however, larger-scale
factors such as proximity to desirable landscape features and
seasonal changes in habitat selection affect the number of indi-
viduals available in an area to encounter infectious sites.
Second, the expected R varies based on environmental con-
ditions, which led to dramatically different disease dynamics
in simulation models. Environment affects site infectiousness
and host encounters, as well as spatio-temporal patterns in
when and where host mortality occurs. Infectious sites created
during the wet season have higher spore concentrations
than those formed in the dry season [23], and in Etosha, dry
seasons and drought shift hosts out of the high-risk area into
habitat with lower anthrax risk ([31,45]; but see patterns in
Tanzania, [46]). Infectious patches formed during the dry
season did not contribute any new cases and host behaviours
under drought-simulated conditions (based on dry season
behaviours) significantly decreased R compared to average
to wetter conditions, patterns that match disease outbreak
dynamics in this ecosystem [24,47]. Thus, environmental
variation in both infection potential of reservoir patches and
host behaviour reinforces the wet season timing of anthrax
in this ecosystem, where mortalities occurring in preferred
wet season habitats are more likely to contribute secondary
infections than mortalities occurring in dry season habitats.

The seasonality of anthrax outbreaks across the global
range of B. anthracis varies from outbreaks associated with
wet seasons or high rainfall events, to large, intermittent out-
breaks often associated with dry seasons or droughts [48].
Our simulation results suggest underlying mechanisms that
could drive variation in seasonality of outbreaks across eco-
systems. For example, soil ingestion occurring during the
dry season led to bigger outbreaks than during the wet
season. This matches patterns observed across locations; out-
breaks occurring during dry seasons are more epidemic-like,
compared to the outbreaks occurring in the wet season that
are typically smaller and more endemic-like [24,47]. This pat-
tern could be explained by a seasonal behavioural change,
with higher visitation rates during the end of the dry
season increasing the exposed population, combined with
longer times spent grazing, increasing individual exposure
risk. We could then expect that extreme weather events
such as drought could impact the disease dynamics in differ-
ent ways. For environments where anthrax deaths peak
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during the dry season, drought would accelerate exposures
and outbreak sizes, while for environments where anthrax
death peaks during the wet season, drought would lead to
a lower infection risk.

The intensity and frequency of anthrax outbreaks likewise
vary across the global range of B. anthracis. In areas like
Etosha where regular, small outbreaks maintain endemicity,
contacts occur annually but are seasonally constrained, redu-
cing the number of exposures occurring at sites. However, for
ecosystems where outbreaks occur infrequently (e.g. decadal
periods in Kruger National Park, South Africa [24]; sporadic
events in Ruaha National Park, Tanzania [49]; re-emergence
after 70 years in northwest Siberia [50]), understanding the
cause of disease emergence with such a long time-lag
between the last recorded case is more difficult to under-
stand. While anthrax can survive for decades in the soil, the
concentration of spores is reduced and the risk of an effective
contact resulting in anthrax mortality is low. Environmental
perturbations may drive outbreaks with time lags that
exceed the lifespan we detected for surface soils of reservoirs.
Extreme events such as droughts, floods, or permafrost melt-
ing may impact host–pathogen contact rates, exposure doses
or host susceptibility. Anthropogenic disturbances can also
enhance exposure risk, such as when soil scarification
brought B. anthracis spores from historic burial grounds—
protected in deeper soil layers for 45 years—to the surface,
causing anthrax cases [51]. Outbreak emergence decades
after the last recorded case may be due to a ‘series of unfor-
tunate events’ that result in infections when contact rates and
exposure dose are relatively low or improbable (similar to the
alignment of conditions promoting disease spillover [52]).

The lethal dose required to kill a host in natural settings
varies with individual susceptibility and behaviour [26].
Using host behaviour combined with pathogen concentrations
and knowledge of long-term outbreak patterns, we were able
to refine our estimation of the lethal dose of B. anthracis in
free-ranging wildlife. Anthrax persists endemically and from
estimates of the frequency at which animals are exposed to
different doses of the pathogen, we can infer lethal doses, in
this case between 107 and 108 spores that would give a fre-
quency of infection matching the observed dynamics. This
information would otherwise be difficult to determinewithout
expensive and impractical animal trials on large, long-lived
wildlife species. Our models assumed infection occurs after a
single exposure, without considering previous exposures,
and that the lethal dose is fixed over the simulation for all indi-
viduals. Lethal doses may vary among andwithin individuals,
depending on factors that alter immune function such as age,
sex, reproductive status, nutrition or other infections [53].
Herbivores show evidence of exposure to sublethal doses
of B. anthracis [28,54]; however, whether these sublethal
exposures confer immune protection or how the timing of pre-
vious exposures alters susceptibility to subsequent exposures
in wild populations remains unknown. If previous exposure
builds resistance [55,56], this would reduce the R by increasing
the lethal dose required for mortality. For inhalational anthrax,
experimental daily exposure of New-Zealand white rabbits
(Oryctolagus cuniculus) to low spore concentrations resulted
in death when an accumulated dose, lower than required for
a single exposure [56], was reach over a three-week study
period [57]. Adding multiple exposures would complicate
the computation of R as grazing at multiple infectious sites
may occur before infections takes place, making it harder to
track the number of secondary infections occurring from a
single infectious site.

By assessing the R for B. anthracis infectious patches, we
show that heterogeneities in hosts, pathogen and environment
are highly interconnected, leading to strong temporal variation
in disease dynamics. Variation in these interactions may
explain outbreak differences observed in different ecosystems,
where host–pathogen exposure rates under dry versuswet con-
ditions change due to herbivore foraging behaviour altered by
rainfall variability and vegetation dynamics overlaid upon a
landscape of variable pathogen risk. Estimating R using mul-
tiple data sources demonstrated how heterogeneity of the
disease system, notably the variability in the transmission
potential of infectious sites, altered epidemiological dynamics.
Understanding this heterogeneity may be of importance for
risk estimates and control efforts in animal husbandry and
conservation in anthrax-prone areas. Future work on how the
lethal dose may be connected to recurrent sublethal exposures
and general animal health may further explain anthrax
dynamics in arid areas worldwide.

Recent studies have recognized the importance of linking
fine-scale host movement to disease transmission [15,58],
where excluding individuals’ movement decisions can then
lead to incorrect predictions [14,59]. Simulation models
showed that including feedback into wild boar (Sus scrofa)
movement decisions led to significantly different results
about persistence of classical swine fever, which has severe
consequences for disease management [60]. For ETPs specifi-
cally, infectious patches can be quite small compared to host
ranges [61] and correctly characterizing contacts between
host and pathogen is crucial to better inform disease
transmission risk. Connecting the three sides of the epidemio-
logical triangle, i.e. connecting how environmental changes
affect pathogens, hosts and host–pathogen contacts in hetero-
geneous landscapes may be of high importance to increase
accuracy in disease risks predictions [15]. For Hendra virus
(Hendra henipavirus), spillover from Australian flying foxes, or
fruit bats (Pteropup spp.) to horses to humans, is associated
with habitat loss and food shortages caused by land use
change and climate change [62]. These changes shift bat move-
ments and foraging behaviours, increasing spillover events.
Similarly, our study emphasizes the importance of the environ-
mental compartment, notably how seasonality affected
pathogen reservoir infectivity and host movements and fora-
ging decisions, with implications for disease transmission
risk at seasonal and interannual scales.
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